Skip to main content
Log in

Application of Geant4 simulation in measurement of cosmic-ray muon flux and studies of muon-induced background

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The low-level underground laboratory at the Institute of Physics Belgrade is a facility for gamma-ray spectroscopy measurements and for measurements of cosmic-ray muon intensity. Related to the two research subjects, studies of cosmic-ray muon-induced background in gamma spectroscopy are of particular interest. Continuous measurements of cosmic muon intensity at the ground level and underground sites have been carried out by means of plastic scintillation detectors. The detector response, interpretation of the experimental spectra and their calibration were obtained and verified using a Geant4-based simulation. The results of the simulation were used in measurement of muon flux at the surface and shallow underground (25 m w e)—the measured fluxes are (170 ± 6) m−2 s−1 and (44 ± 1) m−2 s−1, respectively. An underground muon detector can operate in coincidence with a high-purity germanium gamma-ray detector, which allows investigations of muon-induced processes in germanium spectrometers. In low-level gamma spectroscopy, neutrons produced by muons in the lead shielding of a germanium detector contribute to the detector background. Simulation of prompt muon-induced background as well as simulation of neutron production by cosmic muons in lead were carried out. Estimated neutron yield in lead is (3.1 ± 0.4) × 10–5 neutrons per g/cm2, per tagged muon. Also the average neutron multiplicity is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data sets generated during the current study are available from the corresponding author. Time series of muon flux data are available at http://cosmic.ipb.ac.rs/muon_station/index.html. The simulation code used in this work is publicly available at the zenodo.org data repository, https://doi.org/10.5281/zenodo.10005170.]

References

  1. A. Dragić et al., Nucl. Technol. Radiat. Prot. 26, 181 (2011)

    Article  Google Scholar 

  2. A. Dragić et al., Nucl. Instrum. Methods Phys. Res. A 591, 470 (2008)

    Article  ADS  Google Scholar 

  3. N. Veselinović et al., Nucl. Instrum. Methods Phys. Res. A 875, 10 (2017)

    Article  ADS  Google Scholar 

  4. M. Savić et al., Astropart. Phys. 109, 1 (2019)

    Article  ADS  Google Scholar 

  5. N. Veselinović et al., Eur. Phys. J. D 75, 173 (2021)

    Article  ADS  Google Scholar 

  6. V.A. Kudryavtsev, L. Pandola, V. Tomasello, Eur. Phys. J. A 36, 171 (2008)

    Article  ADS  Google Scholar 

  7. D. Barker, D.-M. Mei, C. Zhang, Phys. Rev. D 86, 054001 (2012)

    Article  ADS  Google Scholar 

  8. H.W. Bae, E.J. Jeon, Y.D. Kim, S.W. Lee, Astropart. Phys. 114, 60 (2020)

    Article  ADS  Google Scholar 

  9. A. Dragić et al., J. Phys. Conf. Ser. 409, 012054 (2013)

    Article  Google Scholar 

  10. Geant4, https://geant4.web.cern.ch/

  11. S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003)

    Article  ADS  Google Scholar 

  12. J. Allison et al., Nucl. Instrum. Methods Phys. Res. A 835, 186 (2016)

    Article  ADS  Google Scholar 

  13. D.R. Joković et al., Appl. Radiat. Isot. 67, 719 (2009)

    Article  Google Scholar 

  14. P.K.F. Grieder, Cosmic Rays at Earth (Elsevier, Amsterdam, 2001), p.372

    Google Scholar 

  15. P.K.F. Grieder, Cosmic Rays at Earth (Elsevier, Amsterdam, 2001), p.498

    Google Scholar 

  16. T.K. Gaisser, Cosmic Rays and Particle Physics (Cambridge University Press, Cambridge, 1990), p.71

    Google Scholar 

  17. M. Guan et al., Muon Simulation at the Daya Bay Site (Lawrence Berkeley National Laboratory, 2010)

    Google Scholar 

  18. P.K.F. Grieder, Cosmic Rays at Earth (Elsevier, Amsterdam, 2001), p.467

    Google Scholar 

  19. CORSIKA, https://www.iap.kit.edu/corsika/

  20. D. Heck et al., CORSIKA: a Monte Carlo code to simulate extensive air showers, Report FZKA 6019. (Forschungszentrum Karlsruhe, 1998)

  21. T. Enquist et al., Nucl. Instrum. Methods Phys. Res. A 554, 286 (2005)

    Article  ADS  Google Scholar 

  22. P.A. Zyla et al., Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

    Article  Google Scholar 

  23. B. Mitrica et al., Adv. High Energy Phys. 2013, 256230 (2013)

    Google Scholar 

  24. N. Jovančević et al., Nucl. Instrum. Methods Phys. Res. A 612, 303 (2010)

    Article  ADS  Google Scholar 

  25. N.Q. Hung, V.H. Hai, M. Nomachi, Appl. Radiat. Isot. 121, 87 (2017)

    Article  Google Scholar 

  26. R. Breier, M. Laubenstein, P.P. Povinec, Appl. Radiat. Isot. 126, 188 (2017)

    Article  Google Scholar 

  27. M. Baginova, P. Vojtyla, P.P. Povinec, Astropart. Phys. 143, 102756 (2022)

    Article  Google Scholar 

  28. J. Knezevic et al., Nucl. Instrum. Methods Phys. Res. A 1032, 166624 (2022)

    Article  Google Scholar 

  29. M. Travar et al., J. Radioanal. Nucl. Chem. 332, 817 (2023)

    Article  Google Scholar 

  30. G. Škoro et al., Nucl. Instrum. Methods Phys. Res. A 316, 333 (1992)

    Article  ADS  Google Scholar 

  31. L. Reichhart et al., Astropart. Phys. 47, 67 (2013)

    Article  ADS  Google Scholar 

  32. Q. Du et al., Astropart. Phys. 102, 12 (2018)

    Article  ADS  Google Scholar 

  33. R. Kneiβl et al., Astropart. Phys. 111, 87 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding provided by the Institute of Physics Belgrade, through the grant by the Ministry for Science, Technological Development and Innovation of the Republic of Serbia. The authors thank the reviewers for valuable suggestions that improved quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejan Joković.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joković, D., Maletić, D., Dragić, A. et al. Application of Geant4 simulation in measurement of cosmic-ray muon flux and studies of muon-induced background. Eur. Phys. J. Plus 138, 1006 (2023). https://doi.org/10.1140/epjp/s13360-023-04639-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04639-1

Navigation