Abstract
We review the status of, and prospects for, real-time data processing for collider experiments in experimental High Energy Physics. We discuss the historical evolution of data rates and volumes in the field and place them in the context of data in other scientific domains and commercial applications. We review the requirements for real-time processing of these data, and the constraints they impose on the computing architectures used for such processing. We describe the evolution of real-time processing over the past decades with a particular focus on the Large Hadron Collider experiments and their planned upgrades over the next decade. We then discuss how the scientific trends in the field and commercial trends in computing architectures may influence real-time processing over the coming decades.
Similar content being viewed by others
Data Availability Statement
There is no data associated with this manuscript.
Notes
For the purposes of this review, an event designates one nominal unit of data used in physics analysis. In collider experiments, it typically corresponds to the data produced during one crossing of the colliding beams.
In practice this means that any deviations from perfect reproducibility should be small compared to other data-simulation differences and systematic uncertainties associated with the relevant physics analyses.
In HEP, and at CERN in particular, data centre power consumption remains marginal relative to the accelerator’s own power consumption. There is nevertheless increasing pressure, which will in any case be amplified by commercial trends, to deploy applications which minimise this power consumption.
References
V. Lindenstruth, I. Kisel, Nuclear instruments and methods in physics research section a: accelerators. Spectrom. Detectors Assoc. Equip. 535, 48 (2004). https://doi.org/10.1016/j.nima.2004.07.267
N. Neufeld, Lhc trigger & daq - an introductory overview, in 2012 18th IEEE-NPSS Real Time Conference, (2012), pp. 1–4
S. Cittolin, Phil. Trans. R. Soc. Lond. A 370, 950 (2012). https://doi.org/10.1098/rsta.2011.0464
J. C. McCallum, Historical prices of computing equipment (2023) https://jcmit.net/index.htm
LHCb collaboration collaboration (R. Aaij et al.), Int. J. Mod. Phys. A30, 1530022 (2014)
ATLAS collaboration collaboration (G. Aad et al.), JINST3, S08003 (2008), https://doi.org/10.1088/1748-0221/3/08/S08003
CMS collaboration collaboration (S. Chatrchyan et al.), JINST3, S08004361 (2008), https://doi.org/10.1088/1748-0221/3/08/S08004
CMS collaboration (A. M. Sirunyan et al.), JINST15, P10017 (2020), arXiv:2006.10165 [hep-ex], https://doi.org/10.1088/1748-0221/15/10/P10017
NA62 collaboration (E. Cortina Gil et al.), JINST12, P05025 (2017), arXiv:1703.08501 [physics.ins-det], https://doi.org/10.1088/1748-0221/12/05/P05025
DUNE collaboration (B. Abi et al.), JINST15, T08008 (2020), arXiv:2002.02967 [physics.ins-det], https://doi.org/10.1088/1748-0221/15/08/T08008
LHCb collaboration (R. Aaij et al.) (5 2023), arXiv:2305.10515 [hep-ex]
ALICE collaboration collaboration (Ananya et al.), J. Phys. Conf. Ser.,513, 012037 (2014)
ATLAS, Technical Design Report for the Phase-II Upgrade of the ATLAS TDAQ System (2017), https://doi.org/10.17181/CERN.2LBB.4IAL, https://cds.cern.ch/record/2285584
CMS, The Phase-2 Upgrade of the CMS Level-1 Trigger (2020), Final version https://cds.cern.ch/record/2714892
M. Dam, Eur. Phys. J. Plus 137, 81 (2022). https://doi.org/10.1140/epjp/s13360-021-02265-3. arXiv:2107.12837 [physics.ins-det]
J. Dorenbosch, eConf. C851111, 134 (1985)
D. Decamp et al., Nuclear instruments and methods in physics research section a: accelerators. Spectrom. Detectors Assoc. Equip. 294, 121 (1990)
V. Bocci et al. (1994), https://doi.org/10.1109/23.467783, https://cds.cern.ch/record/274052
H1 collaboration (I. Abt et al.), Nucl. Instrum. Meth. A386, 310 (1997), https://doi.org/10.1016/S0168-9002(96)00893-5
A. Baird et al., IEEE Trans. Nucl. Sci. 48, 1276 (2001). https://doi.org/10.1109/23.958765. arXiv:hep-ex/0104010
CDF collaboration (D. Amidei et al.), Nucl. Instrum. Meth. A269, 51 (1988), https://doi.org/10.1016/0168-9002(88)90861-3
CDF collaboration (B. Ashmanskas et al.), Nucl. Instrum. Meth. A518, 532 (2004), arXiv:physics/0306169, https://doi.org/10.1016/j.nima.2003.11.078
ATLAS collaboration, ATLAS Level-1 Trigger: Technical Design Report (CERN, Geneva, 1998)
ATLAS collaboration, P. Jenni, M. Nessi, M. Nordberg and K. Smith, ATLAS High-level Trigger, Data-Acquisition and Controls: Technical Design Report (CERN, Geneva, 2003)
CMS collaboration, G. L. Bayatyan et al., CMS TriDAS Project: Technical Design Report, Volume 1: The Trigger Systems
CMS collaboration, S. Cittolin, A. Rácz and P. Sphicas, CMS The TriDAS Project: Technical Design Report, Volume 2: Data Acquisition and High-Level Trigger. CMS trigger and data-acquisition project (CERN, Geneva, 2002)
LHCb collaboration, R. Antunes-Nobrega et al., LHCb trigger system: Technical Design Report (CERN, Geneva, 2003)
LHCb collaboration, T. Nakada, O. Ullaland and W. Witzelling, Expression of Interest for an LHCb Upgrade, tech. rep., CERN (2008)
LHCb collaboration (R. Aaij et al.), JINST14, P04013 (2019), https://doi.org/10.1088/1748-0221/14/04/P04013, arXiv:1812.10790 [hep-ex]
V. V. Gligorov (2011), https://inspirehep.net/literature/928797
R. Aaij et al., JINST 8, P04022 (2013). https://doi.org/10.1088/1748-0221/8/04/P04022. arXiv:1211.3055 [hep-ex]
CMS collaboration (A. Zabi, J. W. Berryhill, E. Perez and A. D. Tapper) (2020)
CMS collaboration (G. Badaro et al.), EPJ Web Conf.251, 04023 (2021), https://doi.org/10.1051/epjconf/202125104023
ATLAS collaboration (https://doi.org/10.1051/epjconf/202125104023) https://doi.org/10.17181/CERN.2LBB.4IAL
CMS collaboration (V. Khachatryan et al.), Phys. Rev. Lett.117, 031802 (2016), arXiv:1604.08907 [hep-ex], https://doi.org/10.1103/PhysRevLett.117.031802
R. Aaij et al., Comput. Phys. Commun. 208, 35 (2016). https://doi.org/10.1016/j.cpc.2016.07.022. arXiv:1604.05596 [physics.ins-det]
ATLAS collaboration collaboration, Trigger-Object Level Analysis with the ATLAS Detector at the Large Hadron Collider: Summary and Perspectives, Tech. Rep. ATL-DAQ-PUB-2017-003, CERN (2017)
ATLAS collaboration (M. Aaboud et al.), Phys. Rev. Lett.121, 081801 (2018), https://doi.org/10.1103/PhysRevLett.121.081801, arXiv:1804.03496 [hep-ex]
CMS collaboration (A. M. Sirunyan et al.), Phys. Rev. Lett.124, 131802 (2020) https://doi.org/10.1103/PhysRevLett.124.131802, arXiv:1912.04776 [hep-ex]
R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y.T. Chen, H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, K. Bertels, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35, 1591 (2016). https://doi.org/10.1109/TCAD.2015.2513673
T. Marc-André, Two FPGA Case Studies Comparing High Level Synthesis and Manual HDL for HEP Applications (2018). arXiv:1806.10672 [physics.ins-det]
J. Marjanovic, Low vs high level programming for FPGA, in 7th International Beam Instrumentation Conference, (2019), p. THOA01
S. Lahti, P. Sjövall, J. Vanne, T.D. Hämäläinen, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 38, 898 (2019). https://doi.org/10.1109/TCAD.2018.2834439
J. Duarte et al., JINST 13, P07027 (2018). https://doi.org/10.1088/1748-0221/13/07/P07027. arXiv:1804.06913 [physics.ins-det]
C. Fitzpatrick, V.V. Gligorov, LHCb-PUB-2014-027 (2014). https://inspirehep.net/literature/1920705
V. V. Gligorov, Conceptualization, implementation, and commissioning of real-time analysis in the High Level Trigger of the LHCb experiment, PhD thesis, Paris U., VI-VII (2018)
R. Aaij et al., JINST 14, P04006 (2019). https://doi.org/10.1088/1748-0221/14/04/P04006. arXiv:1903.01360 [hep-ex]
I. Bird, Ann. Rev. Nucl. Part. Sci. 61, 99 (2011). https://doi.org/10.1146/annurev-nucl-102010-130059
LHCb (2021), https://cds.cern.ch/record/2773174
LHCb collaboration (R. Aaij et al.), Eur. Phys. J. C72, 2022 (2012)https://doi.org/10.1140/epjc/s10052-012-2022-1, arXiv:1202.4979 [hep-ex]
V. Loncar et al., Mach. Learn. Sci. Tech. 2, 015001 (2021). https://doi.org/10.1088/2632-2153/aba042. arXiv:2003.06308 [cs.LG]
LHCb collaboration (R. Aaij et al.), Comput. Softw. Big Sci., (2022)https://doi.org/10.1007/s41781-021-00070-2, arXiv:2105.04031 [physics.ins-det]
R. Aaij, D. H. Cámpora Pérez, T. Colombo, C. Fitzpatrick, V. V. Gligorov, A. Hennequin, N. Neufeld, N. Nolte, R. Schwemmer and D. Vom Bruch, EPJ Web Conf.251, 04009 (2021)https://doi.org/10.1051/epjconf/202125104009, arXiv:2106.07701 [physics.ins-det]
European strategy group collaboration, 2020 Update of the European Strategy for Particle Physics (CERN Council, Geneva, 2020)
R. Brenner, C. Leonidopoulos, Eur. Phys. J. Plus 136, 1198 (2021). https://doi.org/10.1140/epjp/s13360-021-02155-8. arXiv:2111.04168 [physics.ins-det]
FCC collaboration (A. Abada et al.), Eur. Phys. J. ST228, 755 (2019), https://doi.org/10.1140/epjst/e2019-900087-0
C. Accettura et al. (2023), arXiv:2303.08533 [physics.acc-ph]
Acknowledgements
VVG acknowledges support by the European Research Council under Grant Agreement number 724777 “RECEPT”. The authors would like to thank Alessandro Cerri (University of Sussex) for the kind permission to use Fig. 1 in this article.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gligorov, V.V., Reković, V. Review of real-time data processing for collider experiments. Eur. Phys. J. Plus 138, 1005 (2023). https://doi.org/10.1140/epjp/s13360-023-04599-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/s13360-023-04599-6