Skip to main content
Log in

Hubble tension

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We discuss Hubble tension—the disagreement in two major cosmological measurements of the expansion rate of the universe (the Hubble constant), and the foremost development in cosmology over the past several years. We describe the measurements of the Hubble constant from the cosmic microwave background anisotropies and those that use the distance ladder and type Ia supernovae. We briefly review the status of theoretical explanations for the Hubble tension. We finally discuss why the arguably simplest explanation—sample variance in local measurements—cannot explain the Hubble tension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

No data have been produced by this work.

Notes

  1. http://darksky.slac.stanford.edu.

References

  1. E. Hubble, A relation between distance and radial velocity among extra-galactic nebulae. Proc. Nat. Acad. Sci. 15, 168–173 (1929). https://doi.org/10.1073/pnas.15.3.168

    Article  ADS  MATH  Google Scholar 

  2. A. Sandage, G.A. Tammann, Steps toward the Hubble constant. VIII Glob. Value. ApJ 256, 339–345 (1982). https://doi.org/10.1086/159911

    Article  Google Scholar 

  3. G. de Vaucouleurs, G. Bollinger, The extragalactic distance scale. VII—the velocity-distance relations in different directions and the Hubble ratio within and without the local supercluster. ApJ 233, 433–452 (1979). https://doi.org/10.1086/157405

    Article  ADS  Google Scholar 

  4. W.L. Freedman, B.F. Madore, V. Scowcroft, C. Burns, A. Monson, S.E. Persson, M. Seibert, J. Rigby, Carnegie hubble program: a mid-infrared calibration of the hubble constant. ApJ 758, 24 (2012). https://doi.org/10.1088/0004-637X/758/1/24. arXiv:1208.3281

    Article  ADS  Google Scholar 

  5. S. Dhawan, D. Brout, D. Scolnic, A. Goobar, A.G. Riess, V. Miranda, Cosmological model insensitivity of local \(H_0\) from the cepheid distance ladder. Astrophys. J. 894(1), 54 (2020). https://doi.org/10.3847/1538-4357/ab7fb0. arXiv:2001.09260 [astro-ph.CO]

    Article  ADS  Google Scholar 

  6. A.G. Riess, L. Macri, S. Casertano, M. Sosey, H. Lampeitl, H.C. Ferguson, A.V. Filippenko, S.W. Jha, W. Li, R. Chornock, D. Sarkar, A redetermination of the hubble constant with the hubble space telescope from a differential distance ladder. ApJ 699, 539–563 (2009). https://doi.org/10.1088/0004-637X/699/1/539. arXiv:0905.0695 [astro-ph.CO]

    Article  ADS  Google Scholar 

  7. A.G. Riess, L. Macri, S. Casertano, H. Lampeitl, H.C. Ferguson, A.V. Filippenko, S.W. Jha, W. Li, R. Chornock, A 3% solution: determination of the hubble constant with the hubble space telescope and wide field camera 3. ApJ 730, 119 (2011). https://doi.org/10.1088/0004-637X/730/2/119. arXiv:1103.2976

    Article  ADS  Google Scholar 

  8. A.G. Riess, L.M. Macri, S.L. Hoffmann, D. Scolnic, S. Casertano, A.V. Filippenko, B.E. Tucker, M.J. Reid, D.O. Jones, J.M. Silverman, R. Chornock, P. Challis, W. Yuan, P.J. Brown, R.J. Foley, A 2.4% determination of the local value of the hubble constant. ApJ 826, 56 (2016). https://doi.org/10.3847/0004-637X/826/1/56. arXiv:1604.01424

    Article  ADS  Google Scholar 

  9. A.G. Riess, S. Casertano, W. Yuan, L.M. Macri, D. Scolnic, Large magellanic cloud cepheid standards provide a 1% foundation for the determination of the hubble constant and stronger evidence for physics beyond \(\Lambda \)CDM. Astrophys. J. 876(1), 85 (2019). https://doi.org/10.3847/1538-4357/ab1422. arXiv:1903.07603 [astro-ph.CO]

    Article  ADS  Google Scholar 

  10. A.G. Riess et al., A comprehensive measurement of the local value of the hubble constant with 1 km s\(^{-1}\) Mpc\(^{-1}\) uncertainty from the hubble space telescope and the SH0ES team. Astrophys. J. Lett. 934(1), 7 (2022). https://doi.org/10.3847/2041-8213/ac5c5b. arXiv:2112.04510 [astro-ph.CO]

    Article  ADS  Google Scholar 

  11. S.M. Feeney, D.J. Mortlock, N. Dalmasso, Clarifying the hubble constant tension with a Bayesian hierarchical model of the local distance ladder. Mon. Not. Roy. Astron. Soc. 476(3), 3861–3882 (2018). https://doi.org/10.1093/mnras/sty418. arXiv:1707.00007 [astro-ph.CO]

    Article  ADS  Google Scholar 

  12. W.L Freedman, B.F. Madore, Progress in direct measurements of the hubble constant (2023) arXiv:2309.05618 [astro-ph.CO]

  13. N. Aghanim, et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, 6 (2020) . https://doi.org/10.1051/0004-6361/201833910, arXiv:1807.06209 [astro-ph.CO]. [Erratum: Astron.Astrophys. 652, C4 (2021)]

  14. S. Aiola et al., The atacama cosmology telescope: DR4 maps and cosmological parameters. JCAP 12, 047 (2020). https://doi.org/10.1088/1475-7516/2020/12/047. arXiv:2007.07288 [astro-ph.CO]

    Article  ADS  Google Scholar 

  15. A.G. Riess, The expansion of the universe is faster than expected. Nat. Rev. Phys. 2(1), 10–12 (2019). https://doi.org/10.1038/s42254-019-0137-0. arXiv:2001.03624 [astro-ph.CO]

    Article  MathSciNet  Google Scholar 

  16. T.M.C. Abbott et al., Dark energy survey year 1 results: a precise H0 estimate from DES Y1, BAO, and D/H data. Mon. Not. Roy. Astron. Soc. 480(3), 3879–3888 (2018). https://doi.org/10.1093/mnras/sty1939. arXiv:1711.00403 [astro-ph.CO]

    Article  ADS  Google Scholar 

  17. S. Alam et al., Completed SDSS-IV extended Baryon oscillation spectroscopic survey: cosmological implications from two decades of spectroscopic surveys at the apache point observatory. Phys. Rev. D 103(8), 083533 (2021). https://doi.org/10.1103/PhysRevD.103.083533. arXiv:2007.08991 [astro-ph.CO]

    Article  ADS  Google Scholar 

  18. A. Cuceu, J. Farr, P. Lemos, A. Font-Ribera, Baryon acoustic oscillations and the hubble constant: past, present and future. JCAP 10, 044 (2019). https://doi.org/10.1088/1475-7516/2019/10/044. arXiv:1906.11628 [astro-ph.CO]

    Article  ADS  Google Scholar 

  19. K.C. Wong et al., H0LiCOW—XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3\(\sigma \) tension between early- and late-Universe probes. Mon. Not. Roy. Astron. Soc. 498(1), 1420–1439 (2020). https://doi.org/10.1093/mnras/stz3094. arXiv:1907.04869 [astro-ph.CO]

    Article  ADS  Google Scholar 

  20. M. Soares-Santos et al., First measurement of the hubble constant from a dark standard siren using the dark energy survey galaxies and the LIGO/virgo binary-black-hole merger GW170814. Astrophys. J. Lett. 876(1), 7 (2019). https://doi.org/10.3847/2041-8213/ab14f1. arXiv:1901.01540 [astro-ph.CO]

    Article  ADS  Google Scholar 

  21. S.M. Feeney, H.V. Peiris, A.R. Williamson, S.M. Nissanke, D.J. Mortlock, J. Alsing, D. Scolnic, Prospects for resolving the Hubble constant tension with standard sirens. Phys. Rev. Lett. 122(6), 061105 (2019). https://doi.org/10.1103/PhysRevLett.122.061105. arXiv:1802.03404 [astro-ph.CO]

    Article  ADS  Google Scholar 

  22. E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D.F. Mota, A.G. Riess, J. Silk, In the realm of the Hubble tension—a review of solutions. Class. Quant. Grav. 38(15), 153001 (2021). https://doi.org/10.1088/1361-6382/ac086d. arXiv:2103.01183 [astro-ph.CO]

    Article  ADS  Google Scholar 

  23. M. Kamionkowski, A.G. Riess, The hubble tension and early dark energy (2022) arXiv:2211.04492 [astro-ph.CO]

  24. E.L. Turner, R. Cen, J.P. Ostriker, The relation of local measures of Hubble’s constant to its global value. AJ 103, 1427–1437 (1992). (10.1086/116156)

    Article  ADS  Google Scholar 

  25. L. Wang, P.J. Steinhardt, Cluster abundance constraints for cosmological models with a time-varying, spatially inhomogeneous energy component with negative pressure. ApJ 508, 483–490 (1998). https://doi.org/10.1086/306436. arXiv:astro-ph/9804015

    Article  ADS  Google Scholar 

  26. X. Shi, M.S. Turner, Expectations for the Difference between local and global measurements of the hubble constant. ApJ 493, 519–522 (1998) astro-ph/9707101 . https://doi.org/10.1086/305169

  27. A. Cooray, R.R. Caldwell, Large-scale bulk motions complicate the Hubble diagram. Phys. Rev. D 73(10), 103002 (2006) astro-ph/0601377. https://doi.org/10.1103/PhysRevD.73.103002

  28. L. Hui, P.B. Greene, Correlated fluctuations in luminosity distance and the importance of peculiar motion in supernova surveys. Phys. Rev. D 73(12), 123526 (2006) astro-ph/0512159. https://doi.org/10.1103/PhysRevD.73.123526

  29. L.A. Martinez-Vaquero, G. Yepes, Y. Hoffman, S. Gottlöber, M. Sivan, Constrained simulations of the local universe—II. The nature of the local Hubble flow. MNRAS 397, 2070–2080 (2009). https://doi.org/10.1111/j.1365-2966.2009.15093.x. arXiv:0905.3134

    Article  ADS  Google Scholar 

  30. B. Sinclair, T.M. Davis, T. Haugbølle, Residual hubble-bubble effects on supernova cosmology. ApJ 718, 1445–1455 (2010). https://doi.org/10.1088/0004-637X/718/2/1445. arXiv:1006.0911

    Article  ADS  Google Scholar 

  31. H.M. Courtois, D. Pomarède, R.B. Tully, Y. Hoffman, D. Courtois, Cosmography of the local universe. AJ 146, 69 (2013). https://doi.org/10.1088/0004-6256/146/3/69. arXiv:1306.0091.

    Article  ADS  Google Scholar 

  32. I. Ben-Dayan, R. Durrer, G. Marozzi, D.J. Schwarz, Value of H\(_{0}\) in the inhomogeneous universe. Phys. Rev. Lett. 112(22), 221301 (2014). https://doi.org/10.1103/PhysRevLett.112.221301. arXiv:1401.7973

    Article  ADS  Google Scholar 

  33. P. Fleury, C. Clarkson, R. Maartens, How does the cosmic large-scale structure bias the Hubble diagram? JCAP 3, 062 (2017). https://doi.org/10.1088/1475-7516/2017/03/062. arXiv:1612.03726

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. D. Huterer, Growth of cosmic structure. Astron. Astrophys. Rev. 31(1), 2 (2023). https://doi.org/10.1007/s00159-023-00147-4. arXiv:2212.05003 [astro-ph.CO]

    Article  ADS  Google Scholar 

  35. V. Marra, L. Amendola, I. Sawicki, W. Valkenburg, Cosmic variance and the measurement of the local hubble parameter. Phys. Rev. Lett. 110(24), 241305 (2013). https://doi.org/10.1103/PhysRevLett.110.241305. arXiv:1303.3121 [astro-ph.CO]

    Article  ADS  Google Scholar 

  36. R. Wojtak, A. Knebe, W.A. Watson, I.T. Iliev, S. Heß, D. Rapetti, G. Yepes, S. Gottlöber, Cosmic variance of the local Hubble flow in large-scale cosmological simulations. MNRAS 438, 1805–1812 (2014). https://doi.org/10.1093/mnras/stt2321. arXiv:1312.0276

    Article  ADS  Google Scholar 

  37. I. Odderskov, S. Hannestad, T. Haugbølle, On the local variation of the Hubble constant. JCAP 10, 028 (2014). https://doi.org/10.1088/1475-7516/2014/10/028. arXiv:1407.7364

    Article  ADS  Google Scholar 

  38. W.D. Kenworthy, D. Scolnic, A. Riess, The local perspective on the hubble tension: local structure does not impact measurement of the hubble constant. Astrophys. J. 875(2), 145 (2019). https://doi.org/10.3847/1538-4357/ab0ebf. arXiv:1901.08681 [astro-ph.CO]

    Article  ADS  Google Scholar 

  39. H.-Y. Wu, D. Huterer, Sample variance in the local measurements of the Hubble constant. Mon. Not. Roy. Astron. Soc. 471(4), 4946–4955 (2017). https://doi.org/10.1093/mnras/stx1967. arXiv:1706.09723 [astro-ph.CO]

    Article  ADS  Google Scholar 

  40. S.W. Skillman, M.S. Warren, M.J. Turk, R.H. Wechsler, D.E. Holz, P.M. Sutter, Dark sky simulations: early data release. ArXiv e-prints (2014) arXiv:1407.2600

  41. M.S. Warren, 2HOT: An improved parallel hashed oct-tree N-body algorithm for cosmological simulation. ArXiv e-prints (2013) arXiv:1310.4502 [astro-ph.IM]

  42. P.S. Behroozi, R.H. Wechsler, H.-Y. Wu, The ROCKSTAR phase-space temporal halo finder and the velocity offsets of cluster cores. ApJ 762, 109 (2013). https://doi.org/10.1088/0004-637X/762/2/109. arXiv:1110.4372 [astro-ph.CO]

    Article  ADS  Google Scholar 

  43. M.J. Turk, B.D. Smith, J.S. Oishi, S. Skory, S.W. Skillman, T. Abel, M.L. Norman, yt: A multi-code analysis toolkit for astrophysical simulation data. ApJS 192, 9 (2011). https://doi.org/10.1088/0067-0049/192/1/9. arXiv:1011.3514 [astro-ph.IM]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragan Huterer.

Ethics declarations

Conflict of interest

There were no conflicts of interest in this research.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huterer, D. Hubble tension. Eur. Phys. J. Plus 138, 1004 (2023). https://doi.org/10.1140/epjp/s13360-023-04591-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04591-0

Navigation