Skip to main content

Quantization of counterexamples to Dirac’s conjecture

Abstract

Dirac’s conjecture, that secondary first-class constraints generate transformations that do not change the physical system’s state, has various counterexamples. Since no matching gauge conditions can be imposed, the Dirac bracket cannot be defined, and restricting the phase space first and then quantizing is an inconsistent procedure. The latter observation has discouraged the study of systems of this kind more profoundly, while Dirac’s conjecture is assumed generally valid. We point out, however, that secondary first-class constraints are just initial conditions that do not imply Poisson’s bracket modification, and we carry out the quantization successfully by imposing these constraints on the initial state of the wave function. We apply the method to two Dirac’s conjecture counterexamples, including Cawley’s iconical system.

This is a preview of subscription content, access via your institution.

Data Availability Statement

No Data associated in the manuscript.

References

  1. P.A.M. Dirac, Lectures on Quantum Mechanics (Dover, New York, 2001)

    Google Scholar 

  2. R. Cawley, Determination of the Hamiltonian in the Presence of Constraints. Phys. Rev. Lett. 42, 413 (1979)

    Article  ADS  Google Scholar 

  3. A. Frenkel, Comment on Cawley’s counterexample to a conjecture of Dirac. Phys. Rev. D 21, 2986–2987 (1980)

    Article  ADS  Google Scholar 

  4. J. Gomis, K. Kamimura, J.M. Pons, To Construct Gauge Transformations From Singular Lagrangians. EPL 2, 187 (1986). https://doi.org/10.1209/0295-5075/2/3/004

    Article  ADS  Google Scholar 

  5. M. Carmeli, Cawley’s counter example to Dirac’s conjecture as a curved space-time. Int. J. Theor. Phys. 26, 83 (1987). https://doi.org/10.1007/BF00672393

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Montani, R. Montemayor, Lagrangian approach to a symplectic formalism for singular systems. Phys. Rev. D 58, 125018 (1998). https://doi.org/10.1103/PhysRevD.58.125018. [arXiv:hep-th/9805024 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  7. M. de León, J. Gaset, M. Lainz, X. Rivas, N. Román-Roy, Unified Lagrangian-Hamiltonian Formalism for Contact Systems. Fortsch. Phys. 68(8), 2000045 (2020). https://doi.org/10.1002/prop.202000045. [arXiv:2003.13037 [math-ph]]

    Article  MathSciNet  Google Scholar 

  8. K. Tomonari, On well-posed variational principle in degenerate point particle systems using embeddings of symplectic manifold. [arXiv:2304.00877 [math-ph]]

  9. M. Henneaux, C. Teitelboim, Quantization of gauge systems (Princeton University Press, New Jersey, 1992)

    Book  MATH  Google Scholar 

  10. Zi-Ping. Li, A counterexample to a conjecture of Dirac for a system with singular higher-order Lagrangian. EPL 21, 141–146 (1993)

    Article  ADS  Google Scholar 

  11. M. Valenzuela, A pseudoclassical system with gauge and time-reparametrization invariance. Phys. Rev. D 107(8), 85004 (2023). https://doi.org/10.1103/PhysRevD.107.085004. [arXiv:2212.02414 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  12. R. Jinno, R. Sato, Negative mode problem of false vacuum decay revisited. Phys. Rev D104(9), 096009 (2021). https://doi.org/10.1103/PhysRevD.104.096009. [arXiv:2010.04462 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  13. J.L. Anderson, P.G. Bergmann, Constraints in covariant field theories. Phys. Rev. 83, 1018–1025 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. L. Castellani, Symmetries in constrained Hamiltonian systems. Annals Phys. 143, 357 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  15. M.J. Gotay, On the validity of Dirac’s conjecture regarding first-class secondary constraints. J. Phys. A 16, L141 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  16. X. Gracia, J.M. Pons, Gauge generators Dirac’s conjecture and degrees of freedom for constrained systems. Annals Phys. 187, 355 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  17. J. Earman, Tracking down gauge: An ode to the constrained Hamiltonian formalism, in Symmetries in Physics: Philosophical Reflections. ed. by K. Brading, E. Castellani (Cambridge University Press, 2003), pp.140–62

  18. J.M. Pons, On Dirac’s incomplete analysis of gauge transformations. Stud. Hist. Phil. Sci. B 36, 491–518 (2005)

    MathSciNet  MATH  Google Scholar 

  19. T. Maskawa, H. Nakajima, Singular Lagrangian and Dirac-Faddeev method: existence theorems of constraints in standard forms. Prog. Theor. Phys. 56, 1295 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. S. Weinberg. The quantum theory of fields, Vol. 1, Foundations, Cambridge University Press (1995) page 329

  21. A. Das, Nonlinear gauge fixing with auxiliary fields. Phys. Rev. D 26, 2774–2781 (1982)

    Article  ADS  Google Scholar 

  22. S. Asnafi, H. Gies, L. Zambelli, BRST invariant RG flows. Phys. Rev. D 99(8), 085009 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  23. D.Z. Freedman, P. van Nieuwenhuizen, S. Ferrara, Progress toward a theory of supergravity. Phys. Rev. D 13, 3214–3218 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Deser, B. Zumino, Consistent supergravity. Phys. Lett. B 62, 335 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  25. M. Valenzuela, J. Zanelli, The propagating modes of the massless Rarita–Schwinger system. [arXiv:2305.00106 [hep-th]]

  26. M. Valenzuela, J. Zanelli, On the spin content of the classical massless Rarita–Schwinger system. Based on a talk presented at “The 34th International Colloquium on Group Theoretical Methods in Physics,” Strasbourg University, 18-22 July 2022. To appear in SciPost Physics Proceedings. [arXiv:2207.03009 [hep-th]]

  27. M. Valenzuela, Gauge and time-reparametrization invariant spin-half fields. Phys. Rev. D 107, 125026 (2023). [arXiv:2304.05596 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  28. S. Deser, J.H. Kay, K.S. Stelle, Hamiltonian formulation of supergravity. Phys. Rev. D 16, 2448 (1977)

    Article  ADS  Google Scholar 

  29. G. Senjanović, Hamiltonian formulation and quantization of the spin-3/2 field. Phys. Rev. D 16, 307 (1977)

    Article  ADS  Google Scholar 

  30. M. Pilati, The canonical formulation of supergravity. Nucl. Phys. B 132, 138–154 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  31. E. S. Fradkin, Mikhail A. Vasiliev, Hamiltonian Formalism, Quantization and S Matrix for Supergravity, Phys. Lett. B. 72, 70–74 (1977)

  32. P.D. Alvarez, M. Valenzuela, J. Zanelli, Supersymmetry of a different kind. JHEP 04, 058 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. P.D. Alvarez, M. Valenzuela, J. Zanelli, Role of gravity in particle physics: A unified approach. Int. J. Mod. Phys. D 29, 2041012 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. P.D. Alvarez, L. Delage, M. Valenzuela, J. Zanelli, Unconventional SUSY and conventional physics: a pedagogical review. Symmetry 13, 628 (2021)

    Article  ADS  Google Scholar 

  35. P.D. Alvarez, M. Valenzuela, J. Zanelli, Chiral gauge theory and gravity from unconventional supersymmetry. JHEP 07, 205 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. P.D. Alvarez, L. Delage, M. Valenzuela, J. Zanelli, \( \cal{N} \) = 2 extended MacDowell-Mansouri supergravity. JHEP 07, 176 (2021). https://doi.org/10.1007/JHEP07(2021)176. [arXiv:2105.14606 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank F. Canfora for valuable discussions. This work was partially funded by grant FONDECYT 1220862.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Valenzuela.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valenzuela, M. Quantization of counterexamples to Dirac’s conjecture. Eur. Phys. J. Plus 138, 939 (2023). https://doi.org/10.1140/epjp/s13360-023-04565-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04565-2