Skip to main content
Log in

The reflection of plane waves in a micropolar fiber-reinforced thermoelastic medium under impedance boundary condition

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper investigates the reflection of plane waves at the free surface of a micropolar fiber-reinforced medium using the three-phase lag thermoelasticity theory. An impedance type of boundary condition is being adapted at the free surface of the half-space. The harmonic mode analysis technique is applied to solve the coupled wave equations. Our investigation indicates the existence of a transverse wave and three coupled reflected waves at the free surface. The effects of rotation, stress, and micropolarity on the attenuation coefficient, phase velocity, and reflection ratio of all four reflected waves have been examined numerically using MATLAB. This paper is notable for observing some interesting phenomena, such as critical angles and critical frequencies for attenuation coefficients and reflection ratios, respectively. Also, some interesting results have been obtained by comparing our results to those obtained using the GN-III theory of thermoelasticity. Moreover, the paper provides an explicit form of energy ratios and depicts them graphically. It also justifies that the summation of energy ratio is unity in the selected range of angle of incidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

No Data associated in the manuscript.

References

  1. A.C. Eringen, Linear theory of micropolar elasticity. J. Math. Mech. 15, 909–923 (1966)

    MathSciNet  MATH  Google Scholar 

  2. A.C. Eringen, Foundations of Micropolar Thermoelasticity, vol. 23 (Springer, Berlin, 1970)

    Book  MATH  Google Scholar 

  3. W. Nowacki, Theory of Micropolar Elasticity, vol. 494 (Springer, Berlin, 1972)

    MATH  Google Scholar 

  4. H.W. Lord, Y. Shulman, A generalised dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Article  ADS  MATH  Google Scholar 

  5. A.E. Green, K. Lindsay, Thermoelasticity. J. Elast. 2(1), 1–7 (1972)

    Article  MATH  Google Scholar 

  6. A.E. Green, P. Naghdi, Thermoelasticity without energy dissipation. J. Elast. 31(3), 189–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. D.Y. Tzou, A unified field approach for heat conduction from macro-to micro-scales. J. Heat Trans. 117(1), 8–16 (1995)

    Article  Google Scholar 

  8. S.R. Choudhuri, On a thermoelastic three-phase-lag model. J. Therm. Stress. 30(3), 231–238 (2007)

    Article  Google Scholar 

  9. M.I. Othman, W.M. Hasona, E.M. Abd-Elaziz, Effect of rotation and initial stress on generalised micropolar thermoelastic medium with three-phase-lag. J. Comput. Theor. Nanosci. 12(9), 2030–2040 (2015)

    Article  Google Scholar 

  10. S. Gupta, S. Pramanik et al., Reflection and refraction phenomena of shear horizontal waves at the interfaces of sandwiched anisotropic magnetoelastic medium with corrugated boundaries. Eur. Phys. J. Plus 135, 1–41 (2020)

    Article  Google Scholar 

  11. D.K. Sharma, M. Bachher, S. Manna, N. Sarkar, Vibration analysis of functionally graded thermoelastic nonlocal sphere with dual-phase-lag effect. Acta Mech. 231(5), 1765–1781 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Kumari, R. Som, S. Althobaiti, S. Manna, Bending wave at the edge of a thermally affected functionally graded poroelastic plate. Thin-Wall. Struct. 186, 110719 (2023)

    Article  Google Scholar 

  13. N. Sarkar, Wave propagation in an initially stressed elastic half-space solids under time-fractional order two-temperature magneto-thermoelasticity. Eur. Phys. J. Plus 132(4), 154 (2017)

    Article  ADS  Google Scholar 

  14. S. Deswal, B.S. Punia, K.K. Kalkal, Reflection of plane waves at the initially stressed surface of a fiber-reinforced thermoelastic half space with temperature dependent properties. Int. J. Mech. Mater. Des. 15, 159–173 (2019)

    Article  Google Scholar 

  15. S. Deswal, S.K. Sheokand, K.K. Kalkal, Reflection at the free surface of fiber-reinforced thermoelastic rotating medium with two-temperature and phase-lag. Appl. Math. Modell. 65, 106–119 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. S.M. Abo-Dahab, A.M. Abd-Alla, A.A. Kilany, Electromagnetic field in fiber-reinforced micropolar thermoelastic medium using four models. J. Ocean Eng. Sci. 5(3), 230–248 (2020)

    Article  Google Scholar 

  17. K.K. Kalkal, S. Deswal, R. Poonia, Reflection of plane waves in a rotating non-local fiber-reinforced transversely isotropic thermoelastic medium. J. Therm. Stress. 46(4), 1–17 (2023)

    Article  Google Scholar 

  18. A.K. Singh, S. Singh, S. Koley, Reflection of plane wave at an initially stressed rotating piezo-electro-magnetic-fiber-reinforced Composite half-space. Eur. Phys. J. Plus 138(3), 1–16 (2023)

    Article  ADS  Google Scholar 

  19. S. Kundu, D.K. Pandit, S. Gupta, S. Manna, Love wave propagation in a fiber-reinforced medium sandwiched between an isotropic layer and gravitating half-space. J. Eng. Math. 100, 109–119 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Manna, M. Bhat, Love wave fields in a non-local elastic model with reinforced and inhomogeneous media. Soil Dyn. Earthq. Eng. 161, 107388 (2022)

    Article  Google Scholar 

  21. M. Bhat, S. Manna, Behavior of love-wave fields due to the reinforcement, porosity distributions, non-local elasticity and irregular boundary surfaces. Int. J. Appl. Mech. 15(6), 2350042 (2023)

    Article  Google Scholar 

  22. S. Manna, T. Kumari, D. Pramanik, Effect of SH-type waves and shear stress discontinuity on a moving loaded composite structure. Acta Mech. 234(8), 3437–3457 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  23. H.F. Tiersten, Elastic surface waves guided by thin films. J. Appl. Phys. 40(2), 770–789 (1969)

    Article  ADS  Google Scholar 

  24. P. Malischewsky, Surface Waves and Discontinuities (Elsevier, Amsterdam, 1987)

    Google Scholar 

  25. E. Godoy, M. Durán, J.C. Nédélec, On the existence of surface waves in an elastic half-space with impedance boundary conditions. Wave Mot. 49(6), 585–594 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. B. Singh, A.K. Yadav, D. Gupta, Reflection of plane waves from a micropolar thermoelastic solid half-space with impedance boundary conditions. J. Ocean Eng. Sci. 4(2), 122–131 (2019)

    Article  Google Scholar 

  27. H. Kim, J. Kim, J. Lee, M.W. Lee, Thermal barrier coating for carbon fiber-reinforced composite materials. Compos. Part B Eng. 225, 109308 (2021)

    Article  Google Scholar 

  28. A.J. Belfield, T.G. Rogers, A.J.M. Spencer, Stress in elastic plates reinforced by fibres lying in concentric circles. J. Mech. Phys. Solids 31(1), 25–54 (1983)

    Article  ADS  MATH  Google Scholar 

  29. Q.L. Xiong, X.G. Tian, Effect of initial stress on a fiber-reinforced thermoelastic porous media without energy dissipation. Transp. Porous Med. 111, 81–95 (2016)

    Article  MathSciNet  Google Scholar 

  30. M. Schoenberg, D. Censor, Elastic waves in rotating media. Quart. Appl. Math. 31(1), 115–125 (1973)

    Article  MATH  Google Scholar 

  31. R.S. Dhaliwal, H.H. Sherief, Generalised thermoelasticity for anisotropic media. Quart. Appl. Math. 38(1), 1–8 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Achenbach, Wave Propagation in Elastic Solids (Elsevier, 2012)

    MATH  Google Scholar 

  33. I.A. Abbas, A two-dimensional problem for a fibre-reinforced anisotropic thermoelastic half-space with energy dissipation. Sadhana 36, 411–423 (2011)

    Article  MATH  Google Scholar 

  34. D. Singh, G. Kaur, S. Tomar, Waves in non-local elastic solid with voids. J. Elast. 128(1), 85–114 (2017)

    Article  MATH  Google Scholar 

  35. D. Kumar, D. Singh, S.K. Tomar, S. Hirose, T. Saitoh, A. Furukawa, T. Maruyama, Reflection of plane waves from the stress-free boundary of a nonlocal elastic solid half-space containing double porosity. Arch. Appl. Mech. 93(5), 2145–2173 (2023)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thanks Applied Mathematics and Geomechanics (AMG) Lab, Department of Mathematics, IIT Indore for providing the research facilities. One of the authors, Dr. Santanu Manna, also thanks the SERB, Government of India for financial support under project number MTR/2022/000114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Manna.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manna, S., Jain, A. & Pramanik, D. The reflection of plane waves in a micropolar fiber-reinforced thermoelastic medium under impedance boundary condition. Eur. Phys. J. Plus 138, 967 (2023). https://doi.org/10.1140/epjp/s13360-023-04551-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04551-8

Keywords

Mathematics Subject Classification

Navigation