Skip to main content
Log in

Quantum Stirling heat engine in two-coupled-qubit Heisenberg XYZ model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, a quantum Stirling machine as a heat engine or a refrigerator is investigated. The working substance of the machine is considered a two-qubit Heisenberg XYZ model under a magnetic field and the Dzyaloshinskii–Moriya interaction (DMI). We investigate the effects of magnetic field and the temperature of hot and cold baths on the absorbed heat, released heat, work done, efficiency, and performance coefficient of the Stirling heat engine and the Stirling refrigerator. It is deduced that with proper selection of the system parameters, the Stirling cycle can be operated as a heat engine or refrigerator with sufficient efficiency and performance coefficient. With rising the temperature of the hot bath and choosing proper values for other system parameters, the performance coefficient reaches the Carnot refrigerator. The heat engine efficiency can be increased by reducing the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. T. Feldmann, R. Kosloloff, Phys. Rev. E 61, 4774 (2000)

    Article  ADS  Google Scholar 

  2. M.O. Scully, Phys. Rev. Lett. 87, 220601 (2001)

    Article  ADS  Google Scholar 

  3. Y.V. Rostovtsev, A. Matsko, N. Nayak, M.S. Zubairy, M.O. Scully, Phys. Rev. A 67, 053811 (2003)

    Article  ADS  Google Scholar 

  4. T. Feldmann, R. Koslo, Phys. Rev. E 70, 046110 (2004)

    Article  ADS  Google Scholar 

  5. H.T. Quan, Y. Liu, C.P. Sun, F. Nori, Phys. Rev. E 76, 031105 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  6. J. Arnaud, L. Chusseau, F. Philippe, Phys. Rev. E 77, 061102 (2008)

    Article  ADS  Google Scholar 

  7. M.O. Scully, M.S. Zubairy, G.S. Agarwal, H. Walther, Science 299, 862 (2003)

    Article  ADS  Google Scholar 

  8. H.T. Quan, P. Zhang, C.P. Sun, Phys. Rev. E 72, 056110 (2005)

    Article  ADS  Google Scholar 

  9. G.F. Zhang, Eur. Phys. J. D 49, 123 (2008)

    Article  ADS  Google Scholar 

  10. R. Dillenschneider, E. Lutz, Europhys. Lett. 88, 5003 (2009)

    Article  Google Scholar 

  11. A. Hewgill, A. Ferraro, G.D. Chiara, Phys. Rev. A 98, 042102 (2018)

    Article  ADS  Google Scholar 

  12. H.T. Quan, P. Zhang, C.P. Sun, Phys. Rev. E 73, 036122 (2006)

    Article  ADS  Google Scholar 

  13. Y. Rezek, R. Koslo, New J. Phys. 8, 83 (2006)

    Article  ADS  Google Scholar 

  14. G. Thomas, R.S. Johal, Phys. Rev. E 83, 031135 (2011)

    Article  ADS  Google Scholar 

  15. K. Zhang, F. Bariani, P. Meystre, Phys. Rev. Lett. 112, 150602 (2014)

    Article  ADS  Google Scholar 

  16. S. Lin, Z. Song, J. Phys. A 49, 475301 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. J.S. Bennett, L.S. Madsen, H. Rubinsztein-Dunlop, W.P. Bowen, New J. Phys. 22, 103028 (2020)

    Article  ADS  Google Scholar 

  18. S. Cakmak, Turkpence, F. Altintas, Eur. Phys. J. Plus 132, 554 (2017).

  19. A. H. Bahamin Pili, R. Khordad, H. R. Rastegar Sedehi, A. Avazpour, Int. J. Theor. Phys. 62, 192 (2023).

  20. C. Purkait, A. Biswas, Phys. Lett. A 442, 128180 (2022)

    Article  Google Scholar 

  21. D. Gelbwaser-Klimovsky, A. Bylinskii, D. Gangloff, R. Islam, A. Aspuru-Guzik, V. Vuletic, Phys. Rev. Lett. 120, 170601 (2018)

    Article  ADS  Google Scholar 

  22. N.V. Horne, D. Yum, T. Dutta, P. Hanggi, J. Gong, D. Poletti, M. Mukherjee, npj Quant. Inform 6, 37 (2020)

    Google Scholar 

  23. M.A. Macovei, Phys. Rev. Lett. 105, 043708 (2022)

    ADS  MathSciNet  Google Scholar 

  24. X.L. Huang, X.Y. Niu, X.M. Xiu, X.X. Yi, Eur. Phys. J. D 68, 32 (2014)

    Article  ADS  Google Scholar 

  25. V.F. Lisboa, P.R. Dieguez, J.R. Guimarães, J.F.G. Santos, R.M. Serra, Phys. Rev. A 106, 022436 (2022)

    Article  ADS  Google Scholar 

  26. J.P.S. Peterson, T.B. Batalhao, M. Herrera, A.M. Souza, R.S. Sarthour, I.S. Oliveira, R.M. Serra, Phys. Rev. Lett. 123, 240601 (2019)

    Article  ADS  Google Scholar 

  27. S. Cakmak, Phys. Lett. A 422, 127796 (2022)

    Article  Google Scholar 

  28. R. Dann, R. Koslo, P. Salamon, Entropy 22, 1255 (2020)

    Article  ADS  Google Scholar 

  29. D. Stefanatos, Phys. Rev. E 96, 042103 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. A.R. Insinga, Entropy 22, 1060 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  31. Y. Yin, L. Chen, F. Wu, Y. Ge, Physica A 547, 123856 (2020)

    Article  MathSciNet  Google Scholar 

  32. S. Ahadpour, F. Mirmasoudi, Quantum Inf. Process. 20, 63 (2021)

    Article  ADS  Google Scholar 

  33. D. N. Zubarev, Nonequilibrium Statistical Thermodynamics; Consultant Bureau: New York, NY, USA (1974).

  34. A.L. Kuzemsky, Int. J. Mod. Phys. 21, 2821 (2007)

    Article  ADS  Google Scholar 

  35. A.L. Kuzemsky, Statistical Mechanics and the Physics of Many-Particle Model Systems (World Scientific, Singapore, 2017)

    Book  MATH  Google Scholar 

  36. A.L. Kuzemsky, Phys. Part. Nucl. 51, 766 (2020)

    Article  Google Scholar 

  37. U. Lucia, Physica A 392, 1051 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  38. U. Lucia, Sci. Reports 13, 10763 (2023)

    ADS  Google Scholar 

  39. U. Lucia, G. Grisolia, A.L. Kuzemsky, Entropy 22, 887 (2020)

    Article  ADS  Google Scholar 

  40. L. Chen, X. Liu, Y. Ge, F. Wu, H. Feng, S. Xia, Physica A 550, 124140 (2020)

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AHBP and RK presented the main idea. AHBP and HRRS performed the numerical calculations. HRRS checked the numerical results and validation of this work. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Reza Khordad.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pili, A.H.B., Khordad, R. & Sedehi, H.R.R. Quantum Stirling heat engine in two-coupled-qubit Heisenberg XYZ model. Eur. Phys. J. Plus 138, 871 (2023). https://doi.org/10.1140/epjp/s13360-023-04516-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04516-x

Navigation