Abstract
Diffusive shock acceleration (DSA) of particles at collisionless shocks is the major accepted paradigm about the origin of cosmic rays (CRs). As a theory, it was developed during the late 1970s in the so-called test-particle case. If one considers the influence of CR particles at shock structure, then we are talking about nonlinear DSA. We use semi-analytical Blasi’s model of nonlinear DSA to obtain non-thermal spectra of both protons and electrons, starting from their quasi-thermal spectra for which we assumed the \(\kappa \)-distribution, a commonly observed distribution in out-of-equilibrium space plasmas. We treated more carefully than in the previous work the jump conditions at the subshock and included electron heating, resonant and, additionally, non-resonant magnetic field instabilities produced by CRs in the precursor. Also, corrections for escaping flux of protons and synchrotron losses of electrons have been made.
Similar content being viewed by others
Data Availability Statement
This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.]
References
M.S. Longair, High Energy Astrophysics. Vol. 2: Stars, the Galaxy and the Interstellar Medium, Cambridge University Press, Cambridge (1994)
G. Morlino, High-energy cosmic rays from supernovae, in Handbook of Supernovae. ed. by A.W. Alsabti, P. Murdin (Springer, Cham, 2016), pp.1711–1736
W.I. Axford, E. Leer, G. Skadron, The acceleration of cosmic rays by shock waves. in International Cosmic Ray Conference. International Cosmic Ray Conference, vol. 11, p. 132 (1977)
G.F. Krymskii, A regular mechanism for the acceleration of charged particles on the front of a shock wave. Akad. Nauk SSSR Dokl. 234, 1306–1308 (1977)
A.R. Bell, The acceleration of cosmic rays in shock fronts - I. Mon. Not. R. Astron. Soc. 182, 147–156 (1978). https://doi.org/10.1093/mnras/182.2.147
R.D. Blandford, J.P. Ostriker, Particle acceleration by astrophysical shocks. Astrophys. J. Lett. 221, 29–32 (1978). https://doi.org/10.1086/182658
L.O. Drury, An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep. Progress Phys. 46(8), 973–1027 (1983). https://doi.org/10.1088/0034-4885/46/8/002
E.G. Berezhko, D.C. Ellison, A simple model of nonlinear diffusive shock acceleration. Astrophys. J. 526(1), 385–399 (1999). https://doi.org/10.1086/307993
M.A. Malkov, L.O. Drury, Nonlinear theory of diffusive acceleration of particles by shock waves. Rep. Progress Phys. 64(4), 429–481 (2001). https://doi.org/10.1088/0034-4885/64/4/201
P. Blasi, A novel approach to non linear shock acceleration. Nucl. Phys. B Proc. Suppl. 110, 475–477 (2002). https://doi.org/10.1016/S0920-5632(02)01539-6
P. Blasi, A semi-analytical approach to non-linear shock acceleration. Astropart. Phys. 16(4), 429–439 (2002). https://doi.org/10.1016/S0927-6505(01)00127-X
E. Amato, P. Blasi, A general solution to non-linear particle acceleration at non-relativistic shock waves. Mon. Not. R. Astron. Soc. 364(1), 76–80 (2005). https://doi.org/10.1111/j.1745-3933.2005.00110.x
D. Caprioli, A. Spitkovsky, Simulations of ion acceleration at non-relativistic shocks. I. Acceleration efficiency. Astrophys. J. 783(2), 91 (2014). https://doi.org/10.1088/0004-637X/783/2/91
D. Caprioli, A. Spitkovsky, Simulations of ion acceleration at non-relativistic shocks. II. Magnetic field amplification. Astrophys. J. 794(1), 46 (2014). https://doi.org/10.1088/0004-637X/794/1/46
D. Caprioli, A. Spitkovsky, Simulations of ion acceleration at non-relativistic shocks. III. Particle diffusion. Astrophys. J. 794(1), 47 (2014). https://doi.org/10.1088/0004-637X/794/1/47
V. Zeković, Resonant micro-instabilities at quasi-parallel collisionless shocks: cause or consequence of shock (re)formation. Phys. Plasmas 26(3), 032106 (2019). https://doi.org/10.1063/1.5050909
J. Park, D. Caprioli, A. Spitkovsky, Simultaneous acceleration of protons and electrons at nonrelativistic quasiparallel collisionless shocks. Phys. Rev. Lett. 114(8), 085003 (2015). https://doi.org/10.1103/PhysRevLett.114.085003
F. Guo, J. Giacalone, The acceleration of electrons at collisionless shocks moving through a turbulent magnetic field. Astrophys. J. 802(2), 97 (2015). https://doi.org/10.1088/0004-637X/802/2/97
B. Arbutina, V. Zeković, Non-linear diffusive shock acceleration: a recipe for injection of electrons. Astropart. Phys. 127, 102546 (2021). https://doi.org/10.1016/j.astropartphys.2020.102546
D. Urošević, On the radio spectra of supernova remnants. Astrophys. Space Sci. 354(2), 541–552 (2014). https://doi.org/10.1007/s10509-014-2095-4
G. Livadiotis, D.J. McComas, Invariant kappa distribution in space plasmas out of equilibrium. Astrophys. J. 741(2), 88 (2011). https://doi.org/10.1088/0004-637X/741/2/88
G. Livadiotis, Statistical origin and properties of kappa distributions. J. Phys. Conf. Ser. 900, 012014 (2017). https://doi.org/10.1088/1742-6596/900/1/012014
G. Livadiotis, Kappa distributions: statistical physics and thermodynamics of space and astrophysical plasmas. Universe 4(12), 144 (2018). https://doi.org/10.3390/universe4120144
G. Livadiotis, D.J. McComas, Physical correlations lead to kappa distributions. Astrophys. J. 940(1), 83 (2022). https://doi.org/10.3847/1538-4357/ac99df
P. Blasi, Nonlinear shock acceleration in the presence of seed particles. Astropart. Phys. 21(1), 45–57 (2004). https://doi.org/10.1016/j.astropartphys.2003.10.008
P. Blasi, S. Gabici, G. Vannoni, On the role of injection in kinetic approaches to non-linear particle acceleration at non-relativistic shock waves. Mon. Not. R. Astron. Soc. 361(3), 907–918 (2005). https://doi.org/10.1111/j.1365-2966.2005.09227.x
P. Blasi, E. Amato, D. Caprioli, The maximum momentum of particles accelerated at cosmic ray modified shocks. Mon. Not. R. Astron. Soc. 375(4), 1471–1478 (2007). https://doi.org/10.1111/j.1365-2966.2006.11412.x
G. Ferrand, Blasi’s Semi-analytical Kinetic Model of Non-linear Diffusive Shock Acceleration. Personal notes (2010)
M.Z. Pavlović, Modeling the radio-evolution of supernova remnants by using hydrodynamic simulations and non-linear diffusive shock acceleration. PhD thesis, University of Belgrade (2018)
D. Urošević, B. Arbutina, D. Onić, Particle acceleration in interstellar shocks. Astrophys. Space Sci. 364(10), 185 (2019). https://doi.org/10.1007/s10509-019-3669-y
D. Caprioli, P. Blasi, E. Amato, M. Vietri, Dynamical feedback of self-generated magnetic fields in cosmic ray modified shocks. Mon. Not. R. Astron. Soc. 395(2), 895–906 (2009). https://doi.org/10.1111/j.1365-2966.2009.14570.x
D. Caprioli, A.-R. Pop, A. Spitkovsky, Simulations and theory of ion injection at non-relativistic collisionless shocks. Astrophys. J. Lett. 798(2), 28 (2015). https://doi.org/10.1088/2041-8205/798/2/L28
V. Zekovic, B. Arbutina, Quasi-parallel collisionless shock (re)formation and particle acceleration by (non)resonant micro-instabilities. In: Supernova Remnants: An Odyssey in Space After Stellar Death II, p. 129 (2019)
A. Bohdan, Electron acceleration in supernova remnants. Plasma Phys. Control. Fusion 65(1), 014002 (2023). https://doi.org/10.1088/1361-6587/aca5b2
B. Arbutina, V. Zeković, On the distribution function of suprathermal particles at collisionless shocks. J. High Energy Astrophys. 32, 65–70 (2021). https://doi.org/10.1016/j.jheap.2021.08.003
B. Arbutina, Diffusive shock acceleration of cosmic rays—quasi-thermal and non-thermal particle distributions. in 11th International Conference of the Balkan Physical Union (BPU11), 28 August–1 September 2022, Belgrade, Serbia (2023)
A.R. Bell, Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353(2), 550–558 (2004). https://doi.org/10.1111/j.1365-2966.2004.08097.x
E. Amato, P. Blasi, A kinetic approach to cosmic-ray-induced streaming instability at supernova shocks. Mon. Not. R. Astron. Soc. 392(4), 1591–1600 (2009). https://doi.org/10.1111/j.1365-2966.2008.14200.x
J.F. McKenzie, H.J. Völk, Non-linear theory of cosmic ray shocks including self-generated Alfven waves. Astron. Astrophys. 116(2), 191–200 (1982)
R. Vainio, R. Schlickeiser, Self-consistent Alfvén-wave transmission and test-particle acceleration at parallel shocks. Astron. Astrophys. 343, 303–311 (1999)
S.K. Sarbadhicary, C. Badenes, L. Chomiuk, D. Caprioli, D. Huizenga, Supernova remnants in the Local Group—I. A model for the radio luminosity function and visibility times of supernova remnants. Mon. Not. R. Astron. Soc. 464(2), 2326–2340 (2017). https://doi.org/10.1093/mnras/stw2566
D.A. Leahy, F. Merrick, M. Filipović, Radio emission from supernova remnants: model comparison with observations. Universe 8(12), 653 (2022). https://doi.org/10.3390/universe8120653
M.Z. Pavlović, D. Urošević, B. Arbutina, S. Orlando, N. Maxted, M.D. Filipović, Radio evolution of supernova remnants including nonlinear particle acceleration: insights from hydrodynamic simulations. Astrophys. J. 852(2), 84 (2018). https://doi.org/10.3847/1538-4357/aaa1e6
P. Ghavamian, J.M. Laming, C.E. Rakowski, A physical relationship between electron-proton temperature equilibration and mach number in fast collisionless shocks. Astrophys. J. Lett. 654(1), 69–72 (2007). https://doi.org/10.1086/510740
P. Ghavamian, S.J. Schwartz, J. Mitchell, A. Masters, J.M. Laming, Electron-ion temperature equilibration in collisionless shocks: the supernova remnant-solar wind connection. Space Sci. Rev. 178(2–4), 633–663 (2013). https://doi.org/10.1007/s11214-013-9999-0
P. Ghavamian, Electron-ion thermal equilibration in collisionless shocks. In: Supernova Remnants: An Odyssey in Space After Stellar Death, p. 68 (2016)
J.C. Raymond, P. Ghavamian, A. Bohdan, D. Ryu, J. Niemiec, L. Sironi, A. Tran, E. Amato, M. Hoshino, M. Pohl, T. Amano, F. Fiuza, Electron-ion temperature ratio in astrophysical shocks. Astrophys. J. 949(2), 50 (2023). https://doi.org/10.3847/1538-4357/acc528
A.R. Bell, K.M. Schure, B. Reville, G. Giacinti, Cosmic-ray acceleration and escape from supernova remnants. Mon. Not. R. Astron. Soc. 431(1), 415–429 (2013). https://doi.org/10.1093/mnras/stt179
D. Caprioli, E. Amato, P. Blasi, Non-linear diffusive shock acceleration with free-escape boundary. Astropart. Phys. 33(5–6), 307–311 (2010). https://doi.org/10.1016/j.astropartphys.2010.03.001
P. Blasi, Shock acceleration of electrons in the presence of synchrotron losses—I. Test-particle theory. Mon. Not. R. Astron. Soc. 402(4), 2807–2816 (2010). https://doi.org/10.1111/j.1365-2966.2009.16110.x
V.N. Zirakashvili, F. Aharonian, Analytical solutions for energy spectra of electrons accelerated by nonrelativistic shock-waves in shell type supernova remnants. Astron. Astrophys. 465(3), 695–702 (2007). https://doi.org/10.1051/0004-6361:20066494
Funding
The author acknowledges the funding provided through the contract No. 451-03-47/2023-01/200104 by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia, and through the joint project of the Serbian Academy of Sciences and Arts and Bulgarian Academy of Sciences on the detection of Galactic and extragalactic SNRs and HII regions.
Author information
Authors and Affiliations
Contributions
Not applicable.
Corresponding author
Ethics declarations
Conflict of interest
The authors have no relevant financial or non-financial interests to disclose.
Consent to participate
Not applicable.
Consent for publication
Not applicable.
Code availability
Not applicable.
Ethics approval
Not applicable.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Arbutina, B. Nonlinear diffusive shock acceleration of cosmic rays: quasi-thermal and non-thermal particle distributions. Eur. Phys. J. Plus 138, 863 (2023). https://doi.org/10.1140/epjp/s13360-023-04500-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/s13360-023-04500-5