Skip to main content
Log in

Nonlinear diffusive shock acceleration of cosmic rays: quasi-thermal and non-thermal particle distributions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Diffusive shock acceleration (DSA) of particles at collisionless shocks is the major accepted paradigm about the origin of cosmic rays (CRs). As a theory, it was developed during the late 1970s in the so-called test-particle case. If one considers the influence of CR particles at shock structure, then we are talking about nonlinear DSA. We use semi-analytical Blasi’s model of nonlinear DSA to obtain non-thermal spectra of both protons and electrons, starting from their quasi-thermal spectra for which we assumed the \(\kappa \)-distribution, a commonly observed distribution in out-of-equilibrium space plasmas. We treated more carefully than in the previous work the jump conditions at the subshock and included electron heating, resonant and, additionally, non-resonant magnetic field instabilities produced by CRs in the precursor. Also, corrections for escaping flux of protons and synchrotron losses of electrons have been made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. M.S. Longair, High Energy Astrophysics. Vol. 2: Stars, the Galaxy and the Interstellar Medium, Cambridge University Press, Cambridge (1994)

  2. G. Morlino, High-energy cosmic rays from supernovae, in Handbook of Supernovae. ed. by A.W. Alsabti, P. Murdin (Springer, Cham, 2016), pp.1711–1736

    Google Scholar 

  3. W.I. Axford, E. Leer, G. Skadron, The acceleration of cosmic rays by shock waves. in International Cosmic Ray Conference. International Cosmic Ray Conference, vol. 11, p. 132 (1977)

  4. G.F. Krymskii, A regular mechanism for the acceleration of charged particles on the front of a shock wave. Akad. Nauk SSSR Dokl. 234, 1306–1308 (1977)

    ADS  Google Scholar 

  5. A.R. Bell, The acceleration of cosmic rays in shock fronts - I. Mon. Not. R. Astron. Soc. 182, 147–156 (1978). https://doi.org/10.1093/mnras/182.2.147

    Article  ADS  Google Scholar 

  6. R.D. Blandford, J.P. Ostriker, Particle acceleration by astrophysical shocks. Astrophys. J. Lett. 221, 29–32 (1978). https://doi.org/10.1086/182658

    Article  ADS  Google Scholar 

  7. L.O. Drury, An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep. Progress Phys. 46(8), 973–1027 (1983). https://doi.org/10.1088/0034-4885/46/8/002

    Article  ADS  Google Scholar 

  8. E.G. Berezhko, D.C. Ellison, A simple model of nonlinear diffusive shock acceleration. Astrophys. J. 526(1), 385–399 (1999). https://doi.org/10.1086/307993

    Article  ADS  Google Scholar 

  9. M.A. Malkov, L.O. Drury, Nonlinear theory of diffusive acceleration of particles by shock waves. Rep. Progress Phys. 64(4), 429–481 (2001). https://doi.org/10.1088/0034-4885/64/4/201

    Article  ADS  Google Scholar 

  10. P. Blasi, A novel approach to non linear shock acceleration. Nucl. Phys. B Proc. Suppl. 110, 475–477 (2002). https://doi.org/10.1016/S0920-5632(02)01539-6

    Article  ADS  Google Scholar 

  11. P. Blasi, A semi-analytical approach to non-linear shock acceleration. Astropart. Phys. 16(4), 429–439 (2002). https://doi.org/10.1016/S0927-6505(01)00127-X

    Article  ADS  Google Scholar 

  12. E. Amato, P. Blasi, A general solution to non-linear particle acceleration at non-relativistic shock waves. Mon. Not. R. Astron. Soc. 364(1), 76–80 (2005). https://doi.org/10.1111/j.1745-3933.2005.00110.x

    Article  ADS  Google Scholar 

  13. D. Caprioli, A. Spitkovsky, Simulations of ion acceleration at non-relativistic shocks. I. Acceleration efficiency. Astrophys. J. 783(2), 91 (2014). https://doi.org/10.1088/0004-637X/783/2/91

    Article  ADS  Google Scholar 

  14. D. Caprioli, A. Spitkovsky, Simulations of ion acceleration at non-relativistic shocks. II. Magnetic field amplification. Astrophys. J. 794(1), 46 (2014). https://doi.org/10.1088/0004-637X/794/1/46

    Article  ADS  Google Scholar 

  15. D. Caprioli, A. Spitkovsky, Simulations of ion acceleration at non-relativistic shocks. III. Particle diffusion. Astrophys. J. 794(1), 47 (2014). https://doi.org/10.1088/0004-637X/794/1/47

    Article  ADS  Google Scholar 

  16. V. Zeković, Resonant micro-instabilities at quasi-parallel collisionless shocks: cause or consequence of shock (re)formation. Phys. Plasmas 26(3), 032106 (2019). https://doi.org/10.1063/1.5050909

    Article  ADS  Google Scholar 

  17. J. Park, D. Caprioli, A. Spitkovsky, Simultaneous acceleration of protons and electrons at nonrelativistic quasiparallel collisionless shocks. Phys. Rev. Lett. 114(8), 085003 (2015). https://doi.org/10.1103/PhysRevLett.114.085003

    Article  ADS  Google Scholar 

  18. F. Guo, J. Giacalone, The acceleration of electrons at collisionless shocks moving through a turbulent magnetic field. Astrophys. J. 802(2), 97 (2015). https://doi.org/10.1088/0004-637X/802/2/97

    Article  ADS  Google Scholar 

  19. B. Arbutina, V. Zeković, Non-linear diffusive shock acceleration: a recipe for injection of electrons. Astropart. Phys. 127, 102546 (2021). https://doi.org/10.1016/j.astropartphys.2020.102546

    Article  Google Scholar 

  20. D. Urošević, On the radio spectra of supernova remnants. Astrophys. Space Sci. 354(2), 541–552 (2014). https://doi.org/10.1007/s10509-014-2095-4

    Article  ADS  Google Scholar 

  21. G. Livadiotis, D.J. McComas, Invariant kappa distribution in space plasmas out of equilibrium. Astrophys. J. 741(2), 88 (2011). https://doi.org/10.1088/0004-637X/741/2/88

    Article  ADS  Google Scholar 

  22. G. Livadiotis, Statistical origin and properties of kappa distributions. J. Phys. Conf. Ser. 900, 012014 (2017). https://doi.org/10.1088/1742-6596/900/1/012014

    Article  Google Scholar 

  23. G. Livadiotis, Kappa distributions: statistical physics and thermodynamics of space and astrophysical plasmas. Universe 4(12), 144 (2018). https://doi.org/10.3390/universe4120144

    Article  ADS  Google Scholar 

  24. G. Livadiotis, D.J. McComas, Physical correlations lead to kappa distributions. Astrophys. J. 940(1), 83 (2022). https://doi.org/10.3847/1538-4357/ac99df

    Article  ADS  Google Scholar 

  25. P. Blasi, Nonlinear shock acceleration in the presence of seed particles. Astropart. Phys. 21(1), 45–57 (2004). https://doi.org/10.1016/j.astropartphys.2003.10.008

    Article  ADS  Google Scholar 

  26. P. Blasi, S. Gabici, G. Vannoni, On the role of injection in kinetic approaches to non-linear particle acceleration at non-relativistic shock waves. Mon. Not. R. Astron. Soc. 361(3), 907–918 (2005). https://doi.org/10.1111/j.1365-2966.2005.09227.x

    Article  ADS  Google Scholar 

  27. P. Blasi, E. Amato, D. Caprioli, The maximum momentum of particles accelerated at cosmic ray modified shocks. Mon. Not. R. Astron. Soc. 375(4), 1471–1478 (2007). https://doi.org/10.1111/j.1365-2966.2006.11412.x

    Article  ADS  Google Scholar 

  28. G. Ferrand, Blasi’s Semi-analytical Kinetic Model of Non-linear Diffusive Shock Acceleration. Personal notes (2010)

  29. M.Z. Pavlović, Modeling the radio-evolution of supernova remnants by using hydrodynamic simulations and non-linear diffusive shock acceleration. PhD thesis, University of Belgrade (2018)

  30. D. Urošević, B. Arbutina, D. Onić, Particle acceleration in interstellar shocks. Astrophys. Space Sci. 364(10), 185 (2019). https://doi.org/10.1007/s10509-019-3669-y

    Article  ADS  MathSciNet  Google Scholar 

  31. D. Caprioli, P. Blasi, E. Amato, M. Vietri, Dynamical feedback of self-generated magnetic fields in cosmic ray modified shocks. Mon. Not. R. Astron. Soc. 395(2), 895–906 (2009). https://doi.org/10.1111/j.1365-2966.2009.14570.x

    Article  ADS  Google Scholar 

  32. D. Caprioli, A.-R. Pop, A. Spitkovsky, Simulations and theory of ion injection at non-relativistic collisionless shocks. Astrophys. J. Lett. 798(2), 28 (2015). https://doi.org/10.1088/2041-8205/798/2/L28

    Article  ADS  Google Scholar 

  33. V. Zekovic, B. Arbutina, Quasi-parallel collisionless shock (re)formation and particle acceleration by (non)resonant micro-instabilities. In: Supernova Remnants: An Odyssey in Space After Stellar Death II, p. 129 (2019)

  34. A. Bohdan, Electron acceleration in supernova remnants. Plasma Phys. Control. Fusion 65(1), 014002 (2023). https://doi.org/10.1088/1361-6587/aca5b2

    Article  ADS  Google Scholar 

  35. B. Arbutina, V. Zeković, On the distribution function of suprathermal particles at collisionless shocks. J. High Energy Astrophys. 32, 65–70 (2021). https://doi.org/10.1016/j.jheap.2021.08.003

    Article  ADS  Google Scholar 

  36. B. Arbutina, Diffusive shock acceleration of cosmic rays—quasi-thermal and non-thermal particle distributions. in 11th International Conference of the Balkan Physical Union (BPU11), 28 August–1 September 2022, Belgrade, Serbia (2023)

  37. A.R. Bell, Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353(2), 550–558 (2004). https://doi.org/10.1111/j.1365-2966.2004.08097.x

    Article  ADS  Google Scholar 

  38. E. Amato, P. Blasi, A kinetic approach to cosmic-ray-induced streaming instability at supernova shocks. Mon. Not. R. Astron. Soc. 392(4), 1591–1600 (2009). https://doi.org/10.1111/j.1365-2966.2008.14200.x

    Article  ADS  Google Scholar 

  39. J.F. McKenzie, H.J. Völk, Non-linear theory of cosmic ray shocks including self-generated Alfven waves. Astron. Astrophys. 116(2), 191–200 (1982)

    ADS  Google Scholar 

  40. R. Vainio, R. Schlickeiser, Self-consistent Alfvén-wave transmission and test-particle acceleration at parallel shocks. Astron. Astrophys. 343, 303–311 (1999)

    ADS  Google Scholar 

  41. S.K. Sarbadhicary, C. Badenes, L. Chomiuk, D. Caprioli, D. Huizenga, Supernova remnants in the Local Group—I. A model for the radio luminosity function and visibility times of supernova remnants. Mon. Not. R. Astron. Soc. 464(2), 2326–2340 (2017). https://doi.org/10.1093/mnras/stw2566

    Article  ADS  Google Scholar 

  42. D.A. Leahy, F. Merrick, M. Filipović, Radio emission from supernova remnants: model comparison with observations. Universe 8(12), 653 (2022). https://doi.org/10.3390/universe8120653

    Article  ADS  Google Scholar 

  43. M.Z. Pavlović, D. Urošević, B. Arbutina, S. Orlando, N. Maxted, M.D. Filipović, Radio evolution of supernova remnants including nonlinear particle acceleration: insights from hydrodynamic simulations. Astrophys. J. 852(2), 84 (2018). https://doi.org/10.3847/1538-4357/aaa1e6

    Article  ADS  Google Scholar 

  44. P. Ghavamian, J.M. Laming, C.E. Rakowski, A physical relationship between electron-proton temperature equilibration and mach number in fast collisionless shocks. Astrophys. J. Lett. 654(1), 69–72 (2007). https://doi.org/10.1086/510740

    Article  ADS  Google Scholar 

  45. P. Ghavamian, S.J. Schwartz, J. Mitchell, A. Masters, J.M. Laming, Electron-ion temperature equilibration in collisionless shocks: the supernova remnant-solar wind connection. Space Sci. Rev. 178(2–4), 633–663 (2013). https://doi.org/10.1007/s11214-013-9999-0

    Article  ADS  Google Scholar 

  46. P. Ghavamian, Electron-ion thermal equilibration in collisionless shocks. In: Supernova Remnants: An Odyssey in Space After Stellar Death, p. 68 (2016)

  47. J.C. Raymond, P. Ghavamian, A. Bohdan, D. Ryu, J. Niemiec, L. Sironi, A. Tran, E. Amato, M. Hoshino, M. Pohl, T. Amano, F. Fiuza, Electron-ion temperature ratio in astrophysical shocks. Astrophys. J. 949(2), 50 (2023). https://doi.org/10.3847/1538-4357/acc528

    Article  ADS  Google Scholar 

  48. A.R. Bell, K.M. Schure, B. Reville, G. Giacinti, Cosmic-ray acceleration and escape from supernova remnants. Mon. Not. R. Astron. Soc. 431(1), 415–429 (2013). https://doi.org/10.1093/mnras/stt179

    Article  ADS  Google Scholar 

  49. D. Caprioli, E. Amato, P. Blasi, Non-linear diffusive shock acceleration with free-escape boundary. Astropart. Phys. 33(5–6), 307–311 (2010). https://doi.org/10.1016/j.astropartphys.2010.03.001

    Article  ADS  Google Scholar 

  50. P. Blasi, Shock acceleration of electrons in the presence of synchrotron losses—I. Test-particle theory. Mon. Not. R. Astron. Soc. 402(4), 2807–2816 (2010). https://doi.org/10.1111/j.1365-2966.2009.16110.x

    Article  ADS  Google Scholar 

  51. V.N. Zirakashvili, F. Aharonian, Analytical solutions for energy spectra of electrons accelerated by nonrelativistic shock-waves in shell type supernova remnants. Astron. Astrophys. 465(3), 695–702 (2007). https://doi.org/10.1051/0004-6361:20066494

    Article  ADS  MATH  Google Scholar 

Download references

Funding

The author acknowledges the funding provided through the contract No. 451-03-47/2023-01/200104 by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia, and through the joint project of the Serbian Academy of Sciences and Arts and Bulgarian Academy of Sciences on the detection of Galactic and extragalactic SNRs and HII regions.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Bojan Arbutina.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Ethics approval

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbutina, B. Nonlinear diffusive shock acceleration of cosmic rays: quasi-thermal and non-thermal particle distributions. Eur. Phys. J. Plus 138, 863 (2023). https://doi.org/10.1140/epjp/s13360-023-04500-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04500-5

Navigation