Skip to main content
Log in

Constrained evolution of effective equation of state parameter in non-linear \(\qquad\qquad f\left( {R,L_{m} } \right)\) dark energy model: insights from Bayesian analysis of cosmic chronometers and Pantheon samples

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We conduct a Bayesian analysis of recent observational datasets, specifically the Cosmic Chronometers (CC) dataset and Pantheon samples, to investigate the evolution of the EoS parameter in dark energy models. Our study focused on the effective EoS parameter, which is described by the parametric form \(\omega _{eff}=-\frac{1}{1+m(1+z)^n}\), where m and n are model parameters. This parametric form is applicable within the framework of \(f(R,L_m)\) gravity, where R represents the Ricci scalar and \(L_m\) is the matter Lagrangian. Here, we examine a non-linear \(f(R,L_m)\) model characterized by the functional form \(f(R,L_m)=\frac{R}{2}+L_m^\alpha\), where \(\alpha\) is the free parameter of the model. We examine the evolution of several cosmological parameters, including the effective EoS parameter \(\omega _{eff}\), the deceleration parameter q, the density parameter \(\rho\), the pressure p, and the statefinder parameters. Our analysis revealed that the constrained current value of the effective EoS parameter, \(\omega _{eff}^{0}=-0.68\pm 0.06\) for both the CC and Pantheon datasets, points towards a quintessence phase. Moreover, at redshift \(z=0\), the deceleration parameter, \(q_0 = -0.61^{+0.01}_{-0.01}\), indicates that the present Universe is undergoing accelerated expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

There are no new data associated with this article.

References

  1. A.G. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. C.L. Bennett et al., Astrophys. J. Suppl. 148, 119–134 (2003)

    Article  ADS  Google Scholar 

  4. R.R. Caldwell, M. Doran, Phys. Rev. D 69, 103517 (2004)

    Article  ADS  Google Scholar 

  5. D.N. Spergel et al., WMAP Collaboration. Astrophys. J. Suppl. 148, 175 (2003)

    Article  ADS  Google Scholar 

  6. D.J. Eisenstein et al., Astrophys. J. 633, 560 (2005)

    Article  ADS  Google Scholar 

  7. W.J. Percival at el., Mon. Not. R. Astron. Soc. 401, 2148 (2010)

  8. T. Koivisto, D.F. Mota, Phys. Rev. D 73, 083502 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  9. S.F. Daniel, Phys. Rev. D 77, 103513 (2008)

    Article  ADS  Google Scholar 

  10. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  Google Scholar 

  11. E.J. Copeland et al., Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  ADS  Google Scholar 

  12. A.A. Starobinsky, Gravit. Cosmol. 6, 157 (2000)

    ADS  Google Scholar 

  13. R.R. Caldwell, Phys. Lett. B 545, 23 (2002)

    Article  ADS  Google Scholar 

  14. R.R. Caldwell, M. Kamionkowski, N.N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003)

    Article  ADS  Google Scholar 

  15. S. Capozziello, Int. J. Mod. Phys. D 11, 483 (2002)

    Article  ADS  Google Scholar 

  16. J.B. Jimenez et al., Phys. Rev. D 98, 044048 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  17. J.B. Jimenez et al., Phys. Rev. D 101, 103507 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  18. W. Khyllep et al., Phys. Rev. D 103, 103521 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  19. N. Dimakis, A. Paliathanasis, T. Christodoulakis, Class. Quantum Gravity 38, 22 (2021)

    Google Scholar 

  20. M. Koussour et al., Phys. Dark Univ. 36, 101051 (2022)

    Article  Google Scholar 

  21. M. Koussour et al., J. High Energy Phys. 37, 15–24 (2023)

    Google Scholar 

  22. M. Koussour, M. Bennai, Chin. J. Phys. 79, 339–347 (2022)

    Article  Google Scholar 

  23. M. Koussour et al., Ann. Phys. 445, 169092 (2022)

    Article  MathSciNet  Google Scholar 

  24. M. Koussour et al., J. High Energy Astrophys 35, 43–51 (2022)

    Article  ADS  Google Scholar 

  25. H.A. Buchdahl, Mon. Not. R. Astron. Soc. 150, 1 (1970)

    Article  ADS  Google Scholar 

  26. R. Kerner, Gen. Relativ. Gravit. 14, 453 (1982)

    Article  ADS  Google Scholar 

  27. H. Kleinert, H.J. Schmidt, Gen. Relativ. Gravit. 34, 1295 (2002)

    Article  ADS  Google Scholar 

  28. S.M. Carroll et al., Phys. Rev. D 70, 043528 (2004)

    Article  ADS  Google Scholar 

  29. S. Capozziello et al., Phys. Lett. B 639, 135 (2006)

    Article  ADS  Google Scholar 

  30. L. Amendola, D. Polarski, S. Tsujikawa, Phys. Rev. Lett. 98, 131302 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  31. S. Nojiri, S.D. Odintsov, Phys. Rev. D 68, 123512 (2003)

    Article  ADS  Google Scholar 

  32. V. Faraoni, Phys. Rev. D 74, 023529 (2006)

    Article  ADS  Google Scholar 

  33. P.J. Zhang, Phys. Rev. D 76, 024007 (2007)

    Article  ADS  Google Scholar 

  34. L. Amendola, S. Tsujikawa, Phys. Lett. B 660, 125 (2008)

    Article  ADS  Google Scholar 

  35. S. Tsujikawa, Phys. Rev. D 77, 023507 (2008)

    Article  ADS  Google Scholar 

  36. T. Liua, X. Zhanga, W. Zhaoa, Phys. Lett. B 777, 286–293 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  37. S. Capozziello, S. Tsujikawa, Phys. Rev. D 77, 107501 (2008)

    Article  ADS  Google Scholar 

  38. S.M. Carroll et al., Phys. Rev. D 70, 043528 (2004)

    Article  ADS  Google Scholar 

  39. A.A. Starobinsky, JETP Lett. 86, 157–163 (2007)

    Article  ADS  Google Scholar 

  40. S. Nojiri, S.D. Odintsov, Phys. Lett.B 657, 238 (2007)

  41. S. Nojiri, S.D. Odintsov, Phys. Rev. D 77, 026007 (2008)

    Article  ADS  Google Scholar 

  42. G. Cognola et al., Phys. Rev. D 77, 046009 (2008)

    Article  ADS  Google Scholar 

  43. J. Santos et al., Phys. Rev. D 76, 083513 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  44. S. Capozziello, V.F. Cardone, V. Salzano, Phys. Rev. D 78, 063504 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  45. R.C. Nunes et al., J. Cosmol. Astropart. 2017(01), 005 (2017)

    Article  Google Scholar 

  46. T. Harko, F.S.N. Lobo, Eur. Phys. J. C 70, 373–379 (2010)

    Article  ADS  Google Scholar 

  47. T. Harko, Phys. Lett. B 669, 376 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  48. T. Harko, Phys. Rev. D 81, 084050 (2010)

    Article  ADS  Google Scholar 

  49. T. Harko, Phys. Rev. D 81, 044021 (2010)

    Article  ADS  Google Scholar 

  50. S. Nesseris, Phys. Rev. D 79, 044015 (2009)

    Article  ADS  Google Scholar 

  51. V. Faraoni, Phys. Rev. D 76, 127501 (2007)

    Article  ADS  Google Scholar 

  52. V. Faraoni, Phys. Rev. D 80, 124040 (2009)

    Article  ADS  Google Scholar 

  53. V. Faraoni, Cosmology in Scalar-Tensor Gravity (Kluwer Academic, Dordrecht, 2004)

    Book  MATH  Google Scholar 

  54. O. Bertolami., J. Páramos, S. Turyshev, arXiv, arXiv:gr-qc/0602016

  55. J. Wang, K. Liao, Class. Quantum Grav. 29, 215016 (2012)

    Article  ADS  Google Scholar 

  56. B.S. Goncalves, P.H.R.S. Moraes, arXiv, arXiv:2101.05918

  57. R. Solanki et al., Commun. Theor. Phys. 75, 075401 (2023)

    Article  ADS  Google Scholar 

  58. L.V. Jaybhaye et al., Universe 9, 163 (2023)

    Article  ADS  Google Scholar 

  59. G.A. Carvalho et al., Eur. Phys. J. C 82, 1096 (2022)

    Article  ADS  Google Scholar 

  60. R.V. Labato, G.A. Carvalho, C.A. Bertulani, Eur. Phys. J. C 81, 1013 (2021)

    Article  ADS  Google Scholar 

  61. T. Harko, S. Shahidi, Eur. Phys. J. C 82, 1003 (2022)

    Article  ADS  Google Scholar 

  62. T. Harko, M.J. Lake, Eur. Phys. J. C 75, 60 (2015)

    Article  ADS  Google Scholar 

  63. Planck Collaboration, Astron. Astrophys. 641, A6 (2020)

    Article  Google Scholar 

  64. M. Moresco, Mon. Not. R. Astron. Soc. 450, L16 (2015)

    Article  ADS  Google Scholar 

  65. M. Moresco et al., Astrophys. J. 868, 84 (2018)

    Article  ADS  Google Scholar 

  66. D.M. Scolnic et al., Astrophys. J. 859, 101 (2018)

    Article  ADS  Google Scholar 

  67. D.F. Mackey et al., Publ. Astron. Soc. Pac. 125, 306 (2013)

    Article  ADS  Google Scholar 

  68. T. Harko, F.S.N. Lobo, Galaxies 2, 410–465 (2014)

    Article  ADS  Google Scholar 

  69. T. Harko et al., Eur. Phys. J. C 75, 386 (2015)

    Article  ADS  Google Scholar 

  70. A. Mukherjee, Mon. Not. R. Astron. Soc. 460, 273–282 (2016)

    Article  ADS  Google Scholar 

  71. M. Koussour, A. De, Eur. Phys. J. C 83, 400 (2023)

    Article  ADS  Google Scholar 

  72. A. Nàjera, A. Fajardo, Phys. Dark Universe 34, 100889 (2021)

    Article  Google Scholar 

  73. S. Arora, A. Parida, P.K. Sahoo, Eur. Phys. J. C 81, 1–7 (2021)

    Article  ADS  Google Scholar 

  74. Bayesian Methods in Cosmology, edited by M. P. Hobson, A. H. Jaffe, A. R. Liddle, P. Mukherjee, and D. Parkison (Cambridge University Press, Cambridge, England, 2009)

  75. J. Simon, L. Verde, R. Jimenez, Phys. Rev. D 71, 123001 (2005)

    Article  ADS  Google Scholar 

  76. D. Stern et al., J. Cosmology Astropart. Phys. 02, 008 (2010)

    Article  ADS  Google Scholar 

  77. M. Moresco, Mon. Not. Roy. Astron. Soc. 450, L16 (2015)

    Article  ADS  Google Scholar 

  78. A.L. Ratsimbazafy et al., Mon. Not. Roy. Astron. Soc. 467, 3239 (2017)

    Article  ADS  Google Scholar 

  79. C. Gruber, O. Luongo, Phys. Rev. D 89, 103506 (2014)

    Article  ADS  Google Scholar 

  80. J.F. Jesus et al., J. Cosmol. Astropart. Phys. 04, 053 (2020)

    Article  ADS  Google Scholar 

  81. J.R. Garza et al., Eur. Phys. J. C 79, 890 (2019)

    Article  ADS  Google Scholar 

  82. J. Lu, Y. Gui, L.X. Xu, Eur. Phys. J. C 63, 349–354 (2009)

    Article  ADS  Google Scholar 

  83. Segio del Campo et al., Phys. Rev. D 86, 083509 (2012)

    Article  ADS  Google Scholar 

  84. V. Sahni et al., JETP Lett. 77, 201–206 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RP23007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Koussour.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myrzakulov, N., Koussour, M., Alfedeel, A.H.A. et al. Constrained evolution of effective equation of state parameter in non-linear \(\qquad\qquad f\left( {R,L_{m} } \right)\) dark energy model: insights from Bayesian analysis of cosmic chronometers and Pantheon samples. Eur. Phys. J. Plus 138, 852 (2023). https://doi.org/10.1140/epjp/s13360-023-04483-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04483-3

Navigation