Skip to main content
Log in

Glass for photonics

  • Review
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In honor of the International Year of Glass 2022 (IYoG’22), this article highlights important aspects of glass and light, focusing on more advanced photonic applications that drive a great many current and future commercially and societally beneficial products and services. Topics include a brief history of photonic glasses, an overview of light guiding, the subsequent use in planar waveguide devices, and their ubiquity as carriers of information and sensors in the form of optical fibers. These sections highlight the strong interconnections on the understanding of the glass composition, glass structure and optical properties. For next developments in glass photonics, new opportunities will be offered by machine learning, artificial intelligence, 3D printing and additive manufacturing. Additionally, the future of glass photonics may also depend on our ability to meet current challenges such as climate change, i.e., the development of an environmentally-friendly manufacturing process, considering environmental impact and possible material shortages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Copyright 2019, American Chemical Society)

Fig. 10
Fig. 11
Fig. 12.

Similar content being viewed by others

References

  1. D.L. Morse, J.W. Evenson, Int. J. Appl. Glass Sci. 7, 409 (2016). https://doi.org/10.1111/ijag.12242

    Article  Google Scholar 

  2. J. Ballato, Opt. Photon. News 31 (2022).

  3. J. Ballato, Bull. Am. Ceram. Soc. 101, 6 (2022)

    Google Scholar 

  4. P.D. Dragic, J. Ballato, Opt. Photon. News 25, 44 (2014)

    Article  ADS  Google Scholar 

  5. E. Snitzer, Phys. Rev. Lett. 7, 444 (1961). https://doi.org/10.1103/PhysRevLett.7.444

    Article  ADS  Google Scholar 

  6. C.J. Koester, E. Snitzer, Appl. Opt. 3, 1182 (1964). https://doi.org/10.1364/AO.3.001182

    Article  ADS  Google Scholar 

  7. K.C. Kao, G.A. Hockham, Proc. IEE. 133, 1151 (1966). https://doi.org/10.1049/piee.1966.0189

    Article  Google Scholar 

  8. F. Kapron, D. Keck, R. Maurer, Appl. Phys. Lett. 17, 423 (1970). https://doi.org/10.1063/1.1653255

    Article  ADS  Google Scholar 

  9. W. Blanc, Y.G. Choi, X. Zhang, M. Nalin, K.A. Richardson, G.C. Righini, M. Ferrari, A. Jha, J. Massera, S. Jiang, J. Ballato, L. Petit, Prog. Mater. Sci. 134, 10108 (2023). https://doi.org/10.1016/j.pmatsci.2023.101084

    Article  Google Scholar 

  10. J.D. Colladon, CR Acad. Sci. 15, 800 (1842)

    Google Scholar 

  11. A. Ghatak, K. Thyagarajan, An Introduction to Fiber Optics (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  12. M.S. Islam, C.M. Cordeiro, M.A. Franco, J. Sultana, A.L. Cruz, D. Abbott, Opt. Express 28, 16089 (2020). https://doi.org/10.1364/OE.389999

    Article  ADS  Google Scholar 

  13. B.J. Eggleton, C. Kerbage, P.S. Westbrook, R.S. Windeler, A. Hale, Opt. Express 9, 698 (2001). https://doi.org/10.1364/OE.9.000698

    Article  ADS  Google Scholar 

  14. P. Russell, Science 299, 358 (2003). https://doi.org/10.1126/science.1079280

    Article  ADS  Google Scholar 

  15. A. Mafi, Adv. Opt. Photon. 7, 459 (2015). https://doi.org/10.1364/AOP.7.000459

    Article  Google Scholar 

  16. S. Karbasi, T. Hawkins, J. Ballato, K.W. Koch, A. Mafi, Opt. Mat. Express 2, 1496 (2012). https://doi.org/10.1364/OME.2.001496

    Article  ADS  Google Scholar 

  17. G.C. Righini, M. Ferrari, Integrated Optics (The Institution of Engineering and Technology, New York, 2021)

    Google Scholar 

  18. T. Otabara, J. Tatebayashi, T. Yoshimura, D. Timmerman, S. Ichikawa, Y. Fujiwara, Jpn. J. Appl. Phys. 62, 1018 (2023). https://doi.org/10.35848/1347-4065/acbb0f

    Article  Google Scholar 

  19. N. Yokoyama, R. Tanabe, Y. Yasuda, H. Honda, S. Ichikawa, Y. Fujiwara, T. Hikosaka, M. Uemukai, T. Tanikawa, R. Katayama, Jpn. J. Appl. Phys. 61, 050902 (2022). https://doi.org/10.35848/1347-4065/ac57ab

    Article  ADS  Google Scholar 

  20. E. Desurvire, Erbium-Doped Fiber Amplifiers, Principles and Applications (Wiley, New York, 1994)

    Google Scholar 

  21. M.J.F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers (Marcel Dekker Inc, New York, 2001)

    Book  Google Scholar 

  22. M. Ferrari, G.C. Righini, Physics and Chemistry of Rare-Earth Ions Doped Glasses (Trans Tech Publishers, New York, 2008)

    Google Scholar 

  23. A. Lukowiak, A. Chiasera, A. Chiappini, G.C. Righini, M. Ferrari, Handbook of Sol-Gel Science and Technology (Springer, Cham, 2017). https://doi.org/10.1007/978-3-319-19454-7_48-1

    Book  Google Scholar 

  24. G.C. Righini, C. Armellini, M. Ferrari, A. Carlotto, A. Carpentiero, A. Chiappini, A. Chiasera, A. Lukowiak, T.N.L. Tran, S. Varas, Materials 16, 2724 (2023). https://doi.org/10.3390/ma16072724

    Article  ADS  Google Scholar 

  25. A. de Pablos-Martin, M. Ferrari, M.J. Pascual, G.C. Righini, La Rivista del Nuovo Cimento 38, 311 (2015). https://doi.org/10.1393/ncr/i2015-10114-0

    Article  ADS  Google Scholar 

  26. A. Chiappini, A. Chiasera, C. Armellini, S. Varas, A. Carpentiero, M. Mazzola, E. Moser, S. Berneschi, G.C. Righini, M. Ferrari, J. Sol-Gel Sci. Technol. 60, 408 (2011). https://doi.org/10.1007/s10971-011-2556-y

    Article  Google Scholar 

  27. T.N.L. Tran, A. Szczurek, A. Carlotto, S. Varas, G.C. Righini, M. Ferrari, J. Krzak, A. Lukowiak, A. Chiasera, Opt. Mater. 130, 112577 (2022). https://doi.org/10.1016/j.optmat.2022.112577

    Article  Google Scholar 

  28. S.J.L. Ribeiro, Y. Messaddeq, R.R. Gonçalves, M. Ferrari, M. Montagna, M.A. Aegerter, Appl. Phys. Lett. 77, 3502 (2000). https://doi.org/10.1063/1.1329159

    Article  ADS  Google Scholar 

  29. R.R. Gonçalves, G. Carturan, L. Zampedri, M. Ferrari, M. Montagna, A. Chiasera, G.C. Righini, S. Pelli, S.J.L. Ribeiro, Y. Messaddeq, Appl. Phys. Lett. 81, 28 (2002). https://doi.org/10.1063/1.1489477

    Article  ADS  Google Scholar 

  30. A. Peled, A. Chiasera, M. Nathan, M. Ferrari, S. Ruschin, Appl. Phys. Lett. 92, 221104 (2008). https://doi.org/10.1063/1.2936961

    Article  ADS  Google Scholar 

  31. L. Zur, L.T.N. Tran, M. Meneghetti, T.T.V. Tran, A. Lukowiak, A. Chiasera, D. Zonta, M. Ferrari, G.C. Righini, Opt. Mater. 63, 95 (2008). https://doi.org/10.1016/j.optmat.2016.08.041

    Article  ADS  Google Scholar 

  32. L.T.N Tran, C. Armellini, R. Balda, M. Benabdesselam, S. Berneschi , W. Blanc, B. Boulard, A. Carpentiero, A. Chiappini, A. Chiasera, P. Dentella, D. Dorosz, S. Eaton, M.C. Falconi, J. Fernandez, M. Ferrari, J. Gates, P. Gluchowski, G. Ischia, A. Lukowiak, F. Mady, D. Massella, G. Nunzi Conti, F. Prudenzano, B. Rossi, R. Ramponi, G.C. Righini, P.-J. Sazio, G. Speranza, S. Varas, D. Zonta, L. Zur, Proc. SPIE 11276, 1127614 (2020). https://doi.org/10.1117/12.2547526

  33. “FLEXIBLE PHOTONICS: a multidisciplinary tool enabling sustainable development” https://www.sciencedirect.com/journal/optical-materials/special-issue/10LJ4J18H61

  34. A.C.S. Van Heel, Nature 173, 39 (1954). https://doi.org/10.1038/173039a0

    Article  ADS  Google Scholar 

  35. H.H. Hopkins, N.S. Kapany, Nature 173, 39 (1954). https://doi.org/10.1038/173039b0

    Article  ADS  Google Scholar 

  36. Z.I. Alferov, Rev. Mod. Phys. 73, 767 (2001). https://doi.org/10.1103/RevModPhys.73.767

    Article  ADS  Google Scholar 

  37. https://www.youtube.com/watch?v=g9BL7vUjUfU

  38. J. Hecht, City of Light: The Story of Fiber Optics (Oxford University Press on Demand, Oxford, 2004)

    Google Scholar 

  39. J. Ballato, P. Dragic, Int. J. Appl. Glass Sci. 7, 413 (2016). https://doi.org/10.1111/ijag.12239

    Article  Google Scholar 

  40. T. Li, Optical Fiber Communications: Fiber Fabrication (Elsevier, New York, 2012)

    Google Scholar 

  41. T. Hasegawa, Y. Tamura, H. Sakuma, Y. Kawaguchi, Y. Yamamoto, Y. Koyano, SEI Tech. Rev 86, 18 (2018)

    Google Scholar 

  42. M. Poulain, J. Non-Cryst, Sol. 56, 1 (1983). https://doi.org/10.1016/0022-3093(83)90439-8

    Article  Google Scholar 

  43. M. Poulain, S. Cozic, J.L. Adam, Mid-Infrared Fiber Photonics (Woodhead Publishing, New York, 2022), pp.47–109

    Book  Google Scholar 

  44. I. Cozmuta, D.J. Rasky, New Space 5, 121 (2017). https://doi.org/10.1089/space.2017.0016

    Article  ADS  Google Scholar 

  45. P. Tandon, M.J. Li, D.C. Bookbinder, S.L. Logunov, E.J. Fewkes, Nanophotonics 2, 383 (2013). https://doi.org/10.1515/nanoph-2013-0032

    Article  ADS  Google Scholar 

  46. W. Blanc, Z. Lu, T. Robine, F. Pigeonneau, C. Molardi, D. Tosi, Opt. Mat. Express 12, 2635 (2022). https://doi.org/10.1364/OME.462822

    Article  ADS  Google Scholar 

  47. A. Veber, Z. Lu, M. Vermillac, F. Pigeonneau, W. Blanc, L. Petit, Fibers 7, 105 (2019). https://doi.org/10.3390/fib7120105

    Article  Google Scholar 

  48. G. Liu, B. Jacquier, Spectroscopic Properties of Rare Earths in Optical Materials (Springer, Berlin, 2006)

    Google Scholar 

  49. W. Blanc, V. Mauroy, L. Nguyen, B.N. ShivakiranBhaktha, P. Sebbah, B.P. Pal, B. Dussardier, J. Am. Ceram. Soc. 94, 2315 (2011). https://doi.org/10.1111/j.1551-2916.2011.04672.x

    Article  Google Scholar 

  50. C. Kucera, B. Kokuoz, D. Edmondson, D. Griese, M. Miller, A. James, W. Baker, J. Ballato, Opt. Lett. 34, 2339 (2009). https://doi.org/10.1364/OL.34.002339

    Article  ADS  Google Scholar 

  51. T. Lindstrom, E. Garber, D. Edmonson, T. Hawkins, Y. Chen, G. Turri, M. Bass, J. Ballato, Opt. Mater Express. 2, 1520 (2012). https://doi.org/10.1364/OME.2.001520

    Article  ADS  Google Scholar 

  52. M. Vermillac, H. Fneich, J.F. Lupi, J.B. Tissot, C. Kucera, P. Vennéguès, A. Mehdi, D.R. Neuville, J. Ballato, W. Blanc, Opt. Mater. 68, 24 (2017). https://doi.org/10.1016/j.optmat.2016.11.042

    Article  ADS  Google Scholar 

  53. B.N. Samson, P.A. Tick, N.F. Borrelli, Opt. Lett. 26, 145 (2001). https://doi.org/10.1364/OL.26.000145

    Article  ADS  Google Scholar 

  54. K.E. Downey, B.N Samson, G.H. Beall, E.J. Mozdy, L.R. Pinckney, N.F. Borrelli, A. Mayolet, A. Kerdoncuff, C. Pierron, in Conference on Lasers and Electro-Optics (CLEO), p. CTuP1 (2001)

  55. B.N. Samson, L.R. Pinckney, J. Wang, G.H. Beall, N.F. Borrelli, Opt. Lett. 27, 1309 (2002). https://doi.org/10.1364/OL.27.001309

    Article  ADS  Google Scholar 

  56. C.C. Baker, E.J. Friebele, A.A. Burdett, D.L. Rhonehouse, J. Fontana, W. Kim, S.R. Bowman, L.B. Shaw, J. Sanghera, J. Zhang, R. Pattnaik, M. Dubinskii, J. Ballato, C. Kucera, A. Vargas, A. Hemming, N. Simakov, J. Haub, Opt. Express. 25, 13903 (2017). https://doi.org/10.1364/OE.25.013903

    Article  ADS  Google Scholar 

  57. P.A. Tick, Opt. Lett. 23, 1904 (1998). https://doi.org/10.1364/OL.23.001904

    Article  ADS  Google Scholar 

  58. R.W. Hopper, J. Non-Cryst, Solids 70, 111 (1985). https://doi.org/10.1016/0022-3093(85)90098-5

    Article  Google Scholar 

  59. A. Ishimaru, Y. Kuga, J. Opt. Soc. Am. 72, 1317 (1982). https://doi.org/10.1364/JOSA.72.001317

    Article  ADS  Google Scholar 

  60. W. Blanc, M.H.F. Francois-Saint-Cyr, X. Bidault, S. Chaussedent, C. Hombourger, S. Lacomme, P. Le Coustumer, D.R. Neuville, D.J. Larson, T.J. Prosa, C. Guillermier, J. Phys. Chem. C 123, 29008 (2019)

    Article  Google Scholar 

  61. J. Fourmont, W. Blanc, D. Guichaoua, S. Chaussedent, Sci. Rep. 12, 11959 (2022). https://doi.org/10.1038/s41598-022-16139-w

    Article  ADS  Google Scholar 

  62. S. Marzhan, S. Korganbayev, W. Blanc, T. Ayupova, A. Bekmurzayeva, M. Shaimerdenova, K. Dukenbayev, C. Molardi, D. Tosi, Opt. Lett. 43, 5945 (2018). https://doi.org/10.1364/OL.43.005945

    Article  ADS  Google Scholar 

  63. D. Tosi, C. Molardi, M. Sypabekova, W. Blanc, IEEE Sens. J. 21, 12667 (2020). https://doi.org/10.1109/JSEN.2020.3010572

    Article  ADS  Google Scholar 

  64. A. Beisenova, A. Issatayeva, Z. Ashikbayeva, M. Jelbuldina, A. Aitkulov, V. Inglezakis, W. Blanc, P. Saccomandi, C. Molardi, D. Tosi, Sensors 21, 828 (2021). https://doi.org/10.3390/s21030828

    Article  ADS  Google Scholar 

  65. A. Beisenova, A. Issatayeva, S. Sovetov, S. Korganbayev, M. Jelbuldina, Z. Ashikbayeva, W. Blanc, E. Schena, S. Sales, C. Molardi, D. Tosi, Biomed. Opt. Express 10, 1282 (2019). https://doi.org/10.1364/BOE.10.001282

    Article  Google Scholar 

  66. Z. Ashikbayeva, A. Aitkulov, M. Jelbuldina, A. Issatayeva, A. Beisenova, C. Molardi, P. Saccomandi, W. Blanc, V.J. Inglezakis, D. Tosi, Sci. Rep. 10, 12593 (2020). https://doi.org/10.1038/s41598-020-69384-2

    Article  ADS  Google Scholar 

  67. A. Amantayeva, N. Adilzhanova, A. Issatayeva, W. Blanc, C. Molardi, D. Tosi, Biosensors 11, 446 (2021). https://doi.org/10.3390/bios11110446

    Article  Google Scholar 

  68. A. Issatayeva, A. Amantayeva, W. Blanc, D. Tosi, C. Molardi, Sci. Rep. 11, 8609 (2021). https://doi.org/10.1038/s41598-021-88117-7

    Article  ADS  Google Scholar 

  69. A. Aitkulov, M. Sypabekova, C. Molardi, W. Blanc, D. Tosi, Measurement 172, 108874 (2021). https://doi.org/10.1016/j.measurement.2020.108874

    Article  Google Scholar 

  70. M. Sypabekova, A. Aitkulov, W. Blanc, D. Tosi, Biosens. Bioelectron. 165, 112365 (2020). https://doi.org/10.1016/j.bios.2020.112365

    Article  Google Scholar 

  71. M. Olivero, A. Mirigaldi, V. Serafini, A. Vallan, G. Perrone, W. Blanc, M. Benabdesselam, F. Mady, C. Molardi, D. Tosi, E.E.E. Trans, Instrum. Meas. 70, 1 (2021). https://doi.org/10.1109/TIM.2021.3075518

    Article  Google Scholar 

  72. M. Silveira, A. Frizera, A. Leal-Junior, D. Ribeiro, C. Marques, W. Blanc, C.A. Diaz, Opt. Fiber Technol. 58, 102303 (2020). https://doi.org/10.1016/j.yofte.2020.102303

    Article  Google Scholar 

  73. A.G. Leal-Junior, D. Ribeiro, L.M. Avellar, M. Silveira, C.A.R. Díaz, A. Frizera-Neto, W. Blanc, E. Rocon, C. Marques, IEEE Sens. J. 21, 2995 (2020). https://doi.org/10.1109/JSEN.2020.3024242

    Article  ADS  Google Scholar 

  74. L. Avellar, A. Frizera, H. Rocha, M. Silveira, C. Díaz, W. Blanc, C. Marques, A. Leal-Junior, Phot. Res. 11, 364 (2023). https://doi.org/10.1364/PRJ.471301

    Article  Google Scholar 

  75. J. Luo, X. Zhang, S. Yang, W. Blanc, Z. Yan, X. Yu, I.E.E.E. Phot, Technol. Lett. 35, 613 (2023). https://doi.org/10.1109/LPT.2023.3264576

    Article  Google Scholar 

  76. A. Le Sauze, C. Simonneau, A. Pastouret, D. Gicquel, L. Bigot, S. Choblet, A.M. Jurdyc, B. Jacquier, D. Bayart, L. Gasca, in Optical Amplifiers and Their Applications, p. WC5. (2003)

  77. V. Fuertes, N. Grégoire, P. Labranche, S. Gagnon, N. Hamada, B. Bellanger, Y. Ledemi, S. LaRochelle, Y. Messaddeq, ACS Appl. Nano Mater. 6, 4337 (2023). https://doi.org/10.1021/acsanm.2c05449

    Article  Google Scholar 

  78. H. Fneich, M. Vermillac, D.R. Neuville, W. Blanc, A. Mehdi, Ceramics 5, 182 (2022). https://doi.org/10.3390/ceramics5020016

    Article  Google Scholar 

  79. Z. Lu, N. Vakula, M. Ude, M. Cabié, T. Neisius, F. Orange, F. Pigeonneau, L. Petit, W. Blanc, Opt. Mater. 138, 113644 (2023). https://doi.org/10.1016/j.optmat.2023.113644

    Article  Google Scholar 

  80. N. Ojha, M. Tuomisto, M. Lastusaari, L. Petit, RSC Adv. 8, 19226 (2018). https://doi.org/10.1039/C8RA03298J

    Article  ADS  Google Scholar 

  81. M. Henderson, B. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S.V. Afshar, J. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. Greentree, S. Prawer, T. Monro, Adv. Mater. 23, 2806 (2011). https://doi.org/10.1002/adma.201100151

    Article  Google Scholar 

  82. J. Zhao, X. Zheng, E.P. Schartner, P. Ionescu, R. Zhang, T.L. Nguyen, D. Jin, H. Ebendorff-Heidepriem, Adv. Opt. Mat. 4, 1507 (2016). https://doi.org/10.1002/adom.201600296

    Article  Google Scholar 

  83. A. Lemiere, A. Szczodra, S. Vuori, B. Bondzior, T.W. Hawkins, J. Ballato, M. Lastusaari, J. Massera, L. Petit, Mater. Res. Bull. 153, 111899 (2022). https://doi.org/10.1016/j.materresbull.2022.111899

    Article  Google Scholar 

  84. W. Blanc, V. Mauroy, B. Dussardier, Int. J. Nanotechnol. 9, 480 (2012). https://doi.org/10.1504/IJNT.2012.045350

    Article  ADS  Google Scholar 

  85. M. Vermillac, H. Fneich, J. Turlier, M. Cabié, C. Kucera, D. Borschneck, F. Peters, P. Vennéguès, T. Neisius, S. Chaussedent, D.R. Neuville, W. Blanc, Opt. Mater. 87, 74 (2019). https://doi.org/10.1016/j.optmat.2018.05.067

    Article  ADS  Google Scholar 

  86. V. Fuertes, N. Grégoire, P. Labranche, S. Gagnon, V.A.G. Rivera, S. LaRochelle, Y. Messaddeq, J. Alloys Compd. 17, 168928 (2023). https://doi.org/10.1016/j.jallcom.2023.168928

    Article  Google Scholar 

  87. V. Fuertes, N. Grégoire, S. Morency, S. Gagnon, Y. Ledemi, S. LaRochelle, Y. Messaddeq, Opt. Mater. Express 12, 1323 (2022). https://doi.org/10.1364/OME.451311

    Article  ADS  Google Scholar 

  88. J. Turlier, J. Fourmont, X. Bidault, W. Blanc, S. Chaussedent, Ceram. Int. 46, 26264 (2020). https://doi.org/10.1016/j.ceramint.2020.03.293

    Article  Google Scholar 

  89. M. Cavillon, B. Faugas, J. Zhao, C. Kucera, B. Kukuoz, P. Dragic, X. Qiao, J. Du, J. Ballato, J. Chem. Therm. 128, 119 (2019). https://doi.org/10.1016/j.jct.2018.08.016

    Article  Google Scholar 

  90. M. Vermillac, J.-F. Lupi, F. Peters, M. Cabié, P. Vennegues, C. Kucera, T. Neisius, J. Ballato, W. Blanc, J. Am. Ceram. Soc. 100, 1814 (2017). https://doi.org/10.1111/jace.14774

    Article  Google Scholar 

  91. V. Fuertes, N. Grégoire, P. Labranche, S. Gagnon, R. Wang, Y. Ledemi, S. LaRochelle, Y. Messaddeq, Sci. Rep. 11, 1 (2021). https://doi.org/10.1038/s41598-021-88572-2

    Article  Google Scholar 

  92. M. Cabié, T. Neisius, W. Blanc, Mater. Charac. 178, 111261 (2021). https://doi.org/10.1016/j.matchar.2021.111261

    Article  Google Scholar 

Download references

Acknowledgements

Financial support is grateful acknowledged from these supporters: CNRS and ANR (WB), the J. E. Sirrine Foundation (JB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Blanc.

Ethics declarations

Conflict of interest

Authors are required to disclose financial or non-financial interests that are directly or indirectly related to the work submitted for publication. Please refer to “Competing Interests and Funding” below for more information on how to complete this section.

Data Availability Statement

No Data associated in the manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanc, W., Ballato, J. & Ferrari, M. Glass for photonics. Eur. Phys. J. Plus 138, 858 (2023). https://doi.org/10.1140/epjp/s13360-023-04473-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04473-5

Navigation