Abstract
Sodium and potassium ion channels are significant for generating spiking behaviors in excitable neurons. The marvelous Hodgkin–Huxley (HH) circuit employs time-varying resistors to describe electrophysiological properties of the ion channels and to constrict the relation between membrane potential and ion currents. It is a difficult task to analog implement the marvelous HH circuit, since it contains mixed exponential function for describing the ion currents. To solve and mitigate this issue, a simplified HH circuit with memristive sodium and potassium ion channels is constructed. In the simplified memristive Hodgkin–Huxley (mHH) circuit, a second-order (2nd-order) locally active memristor (LAM) for characterizing sodium ion channel and a first-order (1st-order) LAM for characterizing the potassium ion channel are employed. Numerical simulations employing several numerical tools are utilized to offer unique insight into exploring the dynamical behavior and firing activity of the simplified mHH circuit, which delight that LAMs- and stimulus-related parameters can be used to regulate the generation of various spiking behaviors. Moreover, a PCB-based analog circuit is made by using discrete circuit components and hardware experiment is performed. The experimentally measured results well verify the numerically simulated spiking behaviors. The numerical simulations and experimental confirmations display that the simplified mHH circuit is feasible in producing various neuron firing activities and benefit for developing spike-based applications.
Similar content being viewed by others
Data Availability Statement
This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical research work, so no additional data are associated with this work.]
References
A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952). https://doi.org/10.1113/jphysiol.1952.sp004764
Q. Xu, X. Tan, D. Zhu, H. Bao, Y.H. Hu, B.C. Bao, Bifurcations to bursting and spiking in the chay neuron and their validation in a digital circuit. Chaos Solit. Fract. 141, 110353 (2020). https://doi.org/10.1016/j.chaos.2020.110353
H. Bao, Z.H. Yu, Q. Xu, H.G. Wu, B.C. Bao, Three-dimensional memristive morris-lecar model with magnetic induction effects and its fpga implementation. Cogn. Neurodyn. 17, 1079–1092 (2023). https://doi.org/10.1007/s11571-022-09871-6
H.R. Wilson, Simplified dynamics of human and mammalian neocortical neurons. J. Theor. Biol. 200(4), 375–388 (1999). https://doi.org/10.1006/jtbi.1999.1002
M. Nouri, M. Hayati, T. Serrano-Gotarredona, D. Abbott, A digital neuromorphic realization of the 2D Wilson neuron model. IEEE Trans. Circuits Syst. II 66(1), 136–140 (2019). https://doi.org/10.1109/TCSI.2021.3126555
E.M. Izhikevich, Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569–1572 (2003). https://doi.org/10.1109/TNN.2003.820440
Q. Xu, X. Chen, B. Chen, H.G. Wu, Z. Li, H. Bao, Dynamical analysis of an improved FitzHugh–Nagumo neuron mode with multiplier-free implementation. Nonlinear Dyn. 111(9), 8737–8749 (2023). https://doi.org/10.1007/s11071-023-08274-4
K.M. Wouapi, B.H. Fotsin, F.P. Louodop, K.F. Feudjio, Z.T. Njitacke, T.H. Djeudjo, Various firing activities and finite-time synchronization of an improved Hindmarsh-Rose neuron model under electric field effect. Cogn. Neurodyn. 14, 375–397 (2020). https://doi.org/10.1007/s11571-020-09570-0
X.Y. Zhou, Y. Xu, G.W. Wang, Y. Jia, Ionic channel blockage in stochastic Hodgkin-Huxley neuronal model driven by multiple oscillatory signals. Cogn. Neurodyn. 14, 569–578 (2020). https://doi.org/10.1007/s11571-020-09570-0
Y. Xu, J. Ma, X. Zhan, L.J. Yang, Y. Ja, Temperature effect on memristive ion channels. Cogn. Neurodyn. 13, 601–611 (2019). https://doi.org/10.1007/s11571-019-09547-8
A. Basu, P.E. Hasler, Nullcline-based design of a silicon neuron. IEEE Trans. Circuits Syst. I 57(11), 2938–2947 (2010). https://doi.org/10.1109/TCSI.2010.2048772
S. Haghiri, A. Naderi, B. Ghanbari, A. Ahmadi, High speed and low digital resources implementation of Hodgkin-Huxley neuronal model using base-2 functions. IEEE Trans. Circuits Syst. I 68(1), 275–287 (2021). https://doi.org/10.1109/TCSI.2020.3026076
L.O. Chua, Local activity if the origin of complexity. Int. J. Bifurc. Chaos 15(11), 3435–3456 (2005)
L.O. Chua, V. Sbitnev, H. Kim, Neurons are poised near the edge of chaos. Int. J. Bifurc. Chaos 22(4), 1250098 (2012). https://doi.org/10.1142/S0218127412500988
C.X. Pan, Q.H. Hong, X.P. Wang, A novel memristive chaotic neuron circuit and its application in chaotic neural networks for associative memory, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 40(3), 521–532 (2021). https://doi.org/10.1109/TCAD.2020.3002568
P.P. Jin, G.Y. Wang, Y. Liang, H.H. Iu, L.O. Chua, Neuromorphic dynamics of Chua corsage memristor. IEEE Trans. Circuits Syst. I 68(11), 4419–4432 (2021). https://doi.org/10.1109/TCSI.2021.3121676
S. Kim, C. Du, P. Sheridan, W. Ma, S. Choi, W.D. Lu, Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. ACS Nano 15(3), 2203–2211 (2015). https://doi.org/10.1021/acs.nanolett.5b00697
Q. Xu, Y.T. Wang, H.H.C. Iu, N. Wang, H. Bao, Locally active memristor based neuromorphic circuit: Firing pattern and hardware experiment. IEEE Trans. Circuits Syst. I 70(8), 3130–3141 (2023). https://doi.org/10.1109/TCSI.2023.3276983
Q. Xu, Y.T. Wang, B. Chen, Z. Li, N. Wang, Firing pattern in a memristive Hodgkin–Huxley circuit: numerical simulation and analog circuit validation. Chaos Solitons Fract. 172, 113627 (2023). https://doi.org/10.1016/j.chaos.2023.113627
X.Y. Hu, C.X. Liu, Dynamic property analysis and circuit implementation of simplified memristive Hodgkin–Huxley model. Nonlinear Dyn. 97, 1721–1733 (2019). https://doi.org/10.1007/s11071-019-05100-8
F.F. Yang, Y. Xu, J. Ma, A memristive neuron and its adaptability to external electric field. Chaos 33(2), 023110 (2023). https://doi.org/10.1063/5.0136195
F.Q. Wu, Y.T. Guo, J. Ma, Reproduce the biophysical function of chemical synapse by using a memristive synapse. Nonlinear Dyn. 109, 2063–2084 (2022). https://doi.org/10.1007/s11071-022-07533-0
J. Ma, Biophysical neurons, energy, and synapse controllability: a review. J. Zhejiang Univ.-Sci. A (Appl. Phys. Eng.) 24, 109–129 (2023). https://doi.org/10.1631/jzus.A2200469
A.L. Hodgkin, A.F. Huxley, B. Katz, Ionic currents underlying activities in the giant axon of the squid. Arch. Sci. Physiol. 3, 129–150 (1949)
X.Y. Hu, S. Wang, C.X. Liu, Hidden coexisting firing patterns and bubble-like bifurcation in HR neuron model under electromagnetic induction, Chin. J. Phys. 77, 2541–2549 (2022). https://doi.org/10.1016/j.cjph.2022.04.016
W. Zhang, B.Q. Fan, D. Agarwal, T. Li, Y.G. Yu, Axonal sodium and potassium conductance density determines spiking dynamical properties of regular- and fast-spiking neurons. Nonlinear Dyn. 95, 1035–1052 (2019). https://doi.org/10.1007/s11071-018-4613-3
Z.T. Ju, Y. Lin, B. Chen, H.G. Wu, M. Chen, Q. Xu, Electromagnetic radiation induced non-chaotic behaviors in a Wilson neuron model, Chin. J. Phys. 77, 214–222 (2022). https://doi.org/10.1016/j.cjph.2022.03.012
S.K. Ding, N. Wang, H. Bao, B. Chen, H.G. Wu, Q. Xu, Memristor synapse-coupled piecewise-linear simplified Hopfield neural network: dynamics analysis and circuit implementation. Chaos Solitons Fract. 166, 112899 (2023). https://doi.org/10.1016/j.chaos.2022.112899
D.S. Yu, H.H.C. Iu, A.L. Fitch, Y. Liang, A floating memristor emulator based relaxation oscillator. IEEE Trans. Circuits Syst. I 61(10), 2888–2896 (2014). https://doi.org/10.1109/TCSI.2014.2333687
X.J. Chen, N. Wang, Y.T. Wang, H.G. Wu, Q. Xu, Memristor initial-offset boosting and its bifurcation mechanism in a memristive Fitzhugh-Nagumo neuron model with hidden dynamics. Chaos Solitons Fract. 174, 113836 (2023). https://doi.org/10.1016/j.chaos.2023.113836
A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining lyapunov exponents from a time series. Phys. D 16(3), 285–317 (1985). https://doi.org/10.1016/0167-2789(85)90011-9
X.L. An, S. Qiao, The hidden, period-adding, mixed-mode oscillations and control in a hr neuron under electromagnetic induction. Chaos Solitons Fract. 143, 110587 (2021). https://doi.org/10.1016/j.chaos.2020.110587
S. Panahi, S. Jafari, A.J.M. Khalaf, K. Rajagopal, V.T. Pham, F.E. Alsaadi, Complete dynamical analysis of a neuron under magnetic flow effect, Chin. J. Phys. 56, 2254–2264 (2018). https://doi.org/10.1016/j.cjph.2018.08.008
Y.Z. Cheng, F.H. Min, Z. Rui, Y.P. Dou, Firing multistability, symmetry, bubbles of a Shinriki oscillator with mem-elements, Chin. J. Phys. 74, 157–174 (2021). https://doi.org/10.1016/j.cjph.2021.09.002
M.L. Ma, Y. Yang, Z.C. Qiu, Y.X. Peng, Y.C. Sun, Z.J. Li, M.J. Wang, A locally active discrete memristor model and its application in a hyperchaotic map. Nonlinear Dyn. 107, 2935–2949 (2022). https://doi.org/10.1007/s11071-021-07132-5
J.H. Kim, J.K. Lee, H.G. Kim, K.B. Kim, H.R. Kim, Possible effects of radio frequency electromagnetic field exposure on central nerve system. Biomol. Ther. 27(3), 265–275 (2019). https://doi.org/10.4062/biomolther.2018.152
Y. Yao, J. Ma, Weak periodic signal detection by sine- Wiener-noise-induced resonance in the FitzHugh-Nagumo neuron. Cogn. Neurodyn. 12, 343–349 (2018). https://doi.org/10.1007/s11571-018-9475-3
P.S. Sachdeva, J.A. Livezey, M.R. DeWeese, Heterogeneous synaptic weighting improves neural coding in the presence of common noise. Neural Comput. 32, 1239–1276 (2020). https://doi.org/10.1162/neco_a_01287
F. Yu, H. Shen, Q. Yu, X. Kong, P.K. Sharma, S. Cai, Privacy protection of medical data based on multi-scroll memristive Hopfield neural network. IEEE Trans. Netw. Sci. Eng. 10, 845–858 (2023). https://doi.org/10.1109/TNSE.2022.3223930
A. Basu, S. Ramakrishnan, C. Petre, S. Koziol, S. Brink, P.E. Hasler, Neural dynamics in reconfigurable silicon. IEEE Trans. Biomed. Circuits Syst. 4(5), 311–319 (2010). https://doi.org/10.1109/TBCAS.2010.2055157
Q. Xu, Z.T. Ju, S.K. Ding, C.T. Feng, M. Chen, B.C. Bao, Electromagnetic induction effects on electrical activity within a memristive Wilson neuron model. Cogn. Neurodyn. 16, 1221–1231 (2022). https://doi.org/10.1007/s11571-021-09764-0
M.Y. Ge, Y. Jia, Y. Xu, L.J. Yang, Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn. 91, 515–523 (2018). https://doi.org/10.1007/s11071-017-3886-2
A. Rao, P. Plank, A. Wild, W. Maass, A long short-term memory for AI applications in spike-based neuromorphic hardware. Nat. Mach. Intell. 4, 467–479 (2022). https://doi.org/10.1007/s11071-017-3886-2
M.D. Pickett, G. Medeiros-Ribeiro, R.S. Williams, A scalable neuristor built with Mott memristors. Nature Mater. 12(2), 114–117 (2013). https://doi.org/10.1038/nmat3510
S. Saïghi, Y. Bornat, J. Tomas, G.L. Masson, S. Renaud, A library of analog operators based on the Hodgkin-Huxley formalism for the design of tunable, real-time, silicon neurons. IEEE Trans. Biomed. Circuits Syst. 5(1), 3–19 (2011). https://doi.org/10.1109/TBCAS.2010.2078816
J.M. Cai, H. Bao, Q. Xu, Z.Y. Hua, B.C. Bao, Smooth nonlinear fitting scheme for analog multiplierless implementation of Hindmarsh-rose neuron model. Nonlinear Dyn. 104(4), 4379–4389 (2021). https://doi.org/10.1007/s11071-021-06453-9
G. Dou, K.X. Zhao, M. Guo, J. Mou, Memristor-based lstm network for text classification. Fractals 2023, 2340040 (2023). https://doi.org/10.1142/S0218348X23400406
X.Y. Gao, B. Sun, Y.H. Cao, S. Banerjee, J. Mou, A color image encryption algorithm based on hyperchaotic map and dna mutation. Chin. Phys. B 32, 030501 (2023). https://doi.org/10.1088/1674-1056/ac8cdf
J.N. Teramae, Y. Tsubo, T. Fukai, Optimal spike-based communication in excitable networks with strong-sparse and weak-dense links. Sci. Rep. 2, 485 (2012). https://doi.org/10.1038/srep00485
B. Singh, C. Jain, A. Bansal, An improved adjustable step adaptive neuron-based control approach for the grid-supportive spv system. IEEE Trans. Ind. Appl. 54, 563–570 (2018). https://doi.org/10.1109/TIA.2017.2732338
Y.M. Yang, J. Ma, Y. Xu, Y. Jia, Energy dependence on discharge model of izhikevich neuron driven by external stimulus under electromagnetic induction. Cogn. Neurodyn. 15, 265–277 (2021). https://doi.org/10.1007/s11571-020-09596-4
F.Q. Wu, J. Ma, G. Zhang, Energy estimation and coupling synchronization between biological neurons. Sci. China Tech. Sci. 63, 625–636 (2020). https://doi.org/10.1007/s11431-019-9670-1
Funding
This work was supported by the grants from the National Natural Science Foundations of China under 12172066 and 61801054, the Natural Science Foundation of Jiangsu Province, China, under BK20160282, the Project 333 of Jiangsu Province, the Postgraduate Research and Practice Innovation Program of Jiangsu Province, China under Grant No. KYCX23_3168, and the College Students’ Innovation and Entrepreneurship Training Program of Changzhou Jiangsu Province, China Under Grant No. 202310292042Z. The authors acknowledge the anonymous referees for their valuable comments.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
No conflicts of interest about the publication by all authors.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Fan, W., Wang, Y., Wang, N. et al. Firing activity in a simplified Hodgkin–Huxley circuit with memristive sodium and potassium ion channels. Eur. Phys. J. Plus 138, 834 (2023). https://doi.org/10.1140/epjp/s13360-023-04472-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/s13360-023-04472-6