Skip to main content
Log in

Advanced Corrections of wavelength-resolved neutron transmission imaging

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper uses a Fourier self-deconvolution method for improving the wavelength resolution in transmission experiments at continuous neutron sources utilizing a double-crystal monochromator device to probe as well as correct the generation of higher-order neutron scattering in a monochromatic neutron beam. The cold neutron radiography CONRAD-2 equipment has been utilized to resolve the steel transmission spectra of changing BCC phase and FCC phase fractions. Therefore, both low and high spectral resolution instruments with equivalent wavelength resolution have been proposed. The primary benefit of Fourier self-deconvolution is its ability to precisely narrow individual bands without modifying their relative position or the total band area. Thus, the resolution of the transmission spectrum has been improved by a factor of 3.16, and the info that the sample material comprises two crystallographic phases has been determined by the wavelength resolution improvement employing the deconvolution approach. Additionally, the slight variation in Bragg edge position for different phase fractions and the locations of the double phase Bragg edges have also been obtained using the ray-tracing simulation tool McStas. Steel’s resolving Bragg edge is put to the test in a high-resolution neutron wavelength-selection experiment at the European Spallation Source (ESS test_ beamline V20) using an equipment that utilizes neutron time-of-flight detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No data associated in the manuscript.

References

  1. S.S. Alrwashdeh, A.M. Al-Falahat, H. Markötter, I. Manke, Visualization of water accumulation in micro porous layers in polymer electrolyte membrane fuel cells using synchrotron phase contrast tomography. Case Stud. Chem. Environ. Eng 6, 100260 (2022). https://doi.org/10.1016/j.cscee.2022.100260

    Article  Google Scholar 

  2. S.S. Alrwashdeh, H. Markötter, J. Haußmann, J. Scholta, A. Hilger, I. Manke, X-ray tomographic investigation of water distribution in polymer electrolyte membrane fuel cells with different gas diffusion media. ECS Trans. 72, 99–106 (2016). https://doi.org/10.1149/07208.0099ecst

    Article  Google Scholar 

  3. A.M. Al-Falahat et al., Energy-selective neutron imaging by exploiting wavelength gradients of double crystal monochromators—simulations and experiments. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detect. Assoc. Equip. 943, 162477 (2019). https://doi.org/10.1016/j.nima.2019.162477

    Article  Google Scholar 

  4. A.-F. Ala’a et al., “Correction approach of detector backlighting in radiography,” (in English). Rev. Sci. Instrum. 90(12), 125108 (2019)

    Article  ADS  Google Scholar 

  5. A. Al-Falahat et al., Energy-selective neutron imaging by exploiting wavelength gradients of double crystal monochromatorsSimulations and experiments, (in English). Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detect. Assoc. Equip. 943, 162477 (2019)

    Article  Google Scholar 

  6. H.H. Mantsch, D.J. Moffatt, H.L. Casal, Fourier transform methods for spectral resolution enhancement, (in English). J. Mol. Struct. 173, 285–298 (1988)

    Article  ADS  Google Scholar 

  7. J.K. Kauppinen, D.J. Moffatt, H.H. Mantsch, D.G. Cameron, Fourier transforms in the computation of self-deconvoluted and first-order derivative spectra of overlapped band contours, (in English). Anal. Chem. 53(9), 1454–1457 (1981)

    Article  Google Scholar 

  8. K. Rahmelow, W. Huebner, Fourier self-deconvolution: parameter determination and analytical band shapes, (in English). Appl. Spectrosc. 50(6), 795–804 (1996)

    Article  ADS  Google Scholar 

  9. A. Al-Falahat et al., Temperature dependence in Bragg edge neutron transmission measurements. J. Appl. Crystallogr. 55, 919–928 (2022). https://doi.org/10.1107/S1600576722006549

    Article  Google Scholar 

  10. K.V. Tran et al., Torsion of a rectangular bar: complex phase distribution in 304L steel revealed by neutron tomography. Mater. Des. 222, 111037 (2022). https://doi.org/10.1016/j.matdes.2022.111037

    Article  Google Scholar 

  11. K.V. Tran et al., Phase and texture evaluation of transformation-induced plasticity effect by neutron imaging. Mater. Today Commun. 35, 105826 (2023). https://doi.org/10.1016/j.mtcomm.2023.105826

    Article  Google Scholar 

  12. J.K. Kauppinen, D.J. Moffatt, H.H. Mantsch, D.G. Cameron, Fourier self-deconvolution: a method for resolving intrinsically overlapped bands, (in english). Appl. Spectrosc. 35(3), 271–276 (1981)

    Article  ADS  Google Scholar 

  13. P.R. Griffiths, G.L. Pariente, Introduction to spectral deconvolution, (in English). Trends Anal. Chem. 5(8), 209–215 (1986)

    Article  Google Scholar 

  14. OriginLab. "SCR_014212." http://www.originlab.com/index.aspx?go=PRODUCTS/Origin

  15. N. Kardjilov, A. Hilger, I. Manke, Conrad-2: cold neutron tomography and radiography at BER II (V7). J. Larg.-Scale Res. Facil. JLSRF 2, A98–A98 (2016)

    Article  Google Scholar 

  16. N. Kardjilov, A. Hilger, I. Manke, R. Woracek, J. Banhart, CONRAD-2: the new neutron imaging instrument at the Helmholtz-Zentrum Berlin. J. Appl. Crystallogr. 49, 195–202 (2016). https://doi.org/10.1107/S1600576715023353

    Article  Google Scholar 

  17. N. Kardjilov et al., A highly adaptive detector system for high resolution neutron imaging. Nucl. Instrum. Methods Phys. Res., Sect. A 651(1), 95–99 (2011). https://doi.org/10.1016/j.nima.2011.02.084

    Article  ADS  Google Scholar 

  18. C. Totzke et al., Large area high resolution neutron imaging detector for fuel cell research. J. Pow. Sour. 196(10), 4631–4637 (2011). https://doi.org/10.1016/j.jpowsour.2011.01.049

    Article  Google Scholar 

  19. R. Woracek, J. Santisteban, A. Fedrigo, M. Strobl, Diffraction in neutron imaging—a review. Nucl. Instrum. Methods Phys. Res., Sect. A 878, 141–158 (2018). https://doi.org/10.1016/j.nima.2017.07.040

    Article  ADS  Google Scholar 

  20. K. Nielsen, K. Lefmann, Monte Carlo simulations of neutron-scattering instruments using McStas. Physica B 283(4), 426–432 (2000). https://doi.org/10.1016/S0921-4526(00)00381-1

    Article  ADS  Google Scholar 

  21. M.D. Abràmoff, P.J. Magalhães, S.J. Ram, Image processing with imageJ. Biophotonics Int. 11(7), 36–41 (2004). https://doi.org/10.1117/1.3589100

    Article  Google Scholar 

  22. P.K. Willendrup, K. Lefmann, McStas (i): introduction, use, and basic principles for ray-tracing simulations. J. Neutron Res. 22, 1–16 (2020). https://doi.org/10.3233/JNR-190108

    Article  Google Scholar 

  23. M. Strobl, M. Bulat, K. Habicht, The wavelength frame multiplication chopper system for the ESS test beamline at the BER II reactor—a concept study of a fundamental ESS instrument principle. Nucl. Instrum. Methods Phys. Res., Sect. A 705, 74–84 (2013). https://doi.org/10.1016/j.nima.2012.11.190

    Article  ADS  Google Scholar 

  24. Y. Kiyanagi, T. Kamiyama, K. Kino, H. Sato, S. Sato, S. Uno, Pulsed neutron imaging using 2-dimensional position sensitive detectors. J. Instrum. 9(07), C07012 (2014)

    Article  Google Scholar 

  25. R. Woracek et al., The test beamline of the European spallation source-instrumentation development and wavelength frame multiplication. Nucl. Instrum. Methods Phys. Res., Sect. A 839, 102–116 (2016). https://doi.org/10.1016/j.nima.2016.09.034

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ala’a Al-Falahat.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Falahat, A., Kardjilov, N., Woracek, R. et al. Advanced Corrections of wavelength-resolved neutron transmission imaging. Eur. Phys. J. Plus 138, 840 (2023). https://doi.org/10.1140/epjp/s13360-023-04471-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04471-7

Navigation