Skip to main content
Log in

Dual stratification and cross-diffusion effects on the non-orthogonal stagnation point flow of a nanofluid over an oscillating surface

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the fields of hydrology, environmental engineering and thermal energy storage systems, the large temperature and concentration gradients lead to simultaneous diffusion and stratification phenomena. The non-orthogonal stagnation flows are significant due to their applications in many hydrodynamical processes for emergency shutdown cooling and energy harvesting. Therefore, the present study introduces the novel concept of thermal and solutal stratifications in a nanofluid’s non-orthogonal stagnation point flow. In the concentration and energy balance equations, the diffusive heats resulting from simultaneous mass and heat transport are also taken into account. The surface of stagnation is assumed to be oscillating and stretching linearly. The mathematical model developed under these assumptions is made dimension-free using appropriate variables. The numerical results of the problem are computed using the Lobatto-IIIa formula-based finite difference bvp4c scheme. The numerical results are verified by comparing them to the findings of an earlier study, and the results are discovered to be in good agreement. The graphical illustrations depict significant alterations in the temperature and concentration plots with stratification parameters. The findings showed that the mass transfer is greatly increased by the solutal stratification’s (\(\epsilon _2\)) supremacy over the thermal stratification (\(\epsilon _1\)). In conjunction with the obliqueness parameter (\(\gamma\)), the skin friction coefficient is lowered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The manuscript has no associated data.

References

  1. R. Kumar, R. Kumar, K. Vajravelu, M. Sheikholeslami, Three dimensional stagnation flow of Casson nanofluid through Darcy-Forchheimer space: a reduction to Blasius/Sakiadis flow. Chin. J. Phys. 68, 874–885 (2020)

    Article  MathSciNet  Google Scholar 

  2. M.A. Sadiq, A.U. Khan, S. Saleem, S. Nadeem, Numerical simulation of oscillatory oblique stagnation point flow of a magneto micropolar nanofluid. RSC Adv. 9(9), 4751–4764 (2019)

    Article  ADS  Google Scholar 

  3. K. Tamada, Two-dimensional stagnation-point flow impinging obliquely on a plane wall. J. Phys. Soc. Jpn. 46(1), 310–311 (1979)

    Article  ADS  Google Scholar 

  4. F. Labropulu, M. Chinichian, Unsteady oscillatory stagnation-point flow of a viscoelastic fluid. Int. J. Eng. Sci. 42(7), 625–633 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. T. Javed, A. Ghaffari, H. Ahmad, Numerical study of unsteady MHD oblique stagnation point flow with heat transfer over an oscillating flat plate. Can. J. Phys. 93(10), 1138–1143 (2015)

    Article  ADS  Google Scholar 

  6. R. Rizwana, A. Hussain, S. Nadeem, Mix convection non-boundary layer flow of unsteady MHD oblique stagnation point flow of nanofluid. Int. Commun. Heat Mass Transfer 124, 1–9 (2021)

    Article  Google Scholar 

  7. S. Nadeem, A. Khan, S. Saleem, A comparative analysis on different nanofluid models for the oscillatory stagnation point flow. Eur Phys J Plus 131(8), 1–14 (2016)

    Article  Google Scholar 

  8. A.U. Awan, S. Abid, N. Ullah, S. Nadeem, Magnetohydrodynamic oblique stagnation point flow of second grade fluid over an oscillatory stretching surface. Results Phys 18, 1–11 (2020)

    Article  Google Scholar 

  9. M.F.M. Basir, R. Kumar, A.I. Ismail, G. Sarojamma, P.S. Narayana, J. Raza, A. Mahmood, Exploration of thermal-diffusion and diffusion-thermal effects on the motion of temperature-dependent viscous fluid conveying microorganism. Arab J Sci Eng 44, 8023–8033 (2019)

    Article  Google Scholar 

  10. E.R.G. Eckert, R.M. Drake, Analysis of heat and mass transfer (Springer, London, 1987)

    MATH  Google Scholar 

  11. M. Abd El-Aziz, Thermal-diffusion and diffusion-thermo effects on combined heat and mass transfer by hydromagnetic three-dimensional free convection over a permeable stretching surface with radiation. Phys Lett A 372(3), 263–272 (2008)

    Article  ADS  MATH  Google Scholar 

  12. S. Nadeem, R. Mehmood, N.S. Akbar, Thermo-diffusion effects on MHD oblique stagnation-point flow of a viscoelastic fluid over a convective surface. Eur Phys J Plus 129(8), 1–17 (2014)

    Article  Google Scholar 

  13. R. Mehmood, M. Nayak, N.S. Akbar, O. Makinde, Effects of thermal-diffusion and diffusion-thermo on oblique stagnation point flow of couple stress Casson fluid over a stretched horizontal Riga plate with higher order chemical reaction. J Nanofluids 8(1), 94–102 (2019)

    Article  Google Scholar 

  14. M. Veera Krishna, A.J. Chamkha, Hall effects on unsteady MHD flow of second grade fluid through porous medium with ramped wall temperature and ramped surface concentration. Phys Fluids 30(5), 1–14 (2018)

    Google Scholar 

  15. M. Das, S. Nandi, B. Kumbhakar, G. Shanker Seth, Soret and Dufour effects on MHD nonlinear convective flow of tangent hyperbolic nanofluid over a bidirectional stretching sheet with multiple slips. J Nanofluids 10(2), 200–213 (2021)

    Article  Google Scholar 

  16. W. Ibrahim, O. Makinde, The effect of double stratification on boundary-layer flow and heat transfer of nanofluid over a vertical plate. Comput Fluids 86, 433–441 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Hamid, M. Hashim, M. Alghamdi, A. Khan, Alshomrani, An investigation of thermal and solutal stratification effects on mixed convection flow and heat transfer of Williamson nanofluid. J. Mol. Liq. 284, 307–315 (2019)

    Article  Google Scholar 

  18. S. Mukhopadhyay, K. Bhattacharyya, G. Layek, Mass transfer over an exponentially stretching porous sheet embedded in a stratified medium. Chem. Eng. Commun. 201(2), 272–286 (2014)

    Article  Google Scholar 

  19. T. Hayat, M. Imtiaz, A. Alsaedi, Unsteady flow of nanofluid with double stratification and magnetohydrodynamics. Int. J. Heat Mass Transf. 92, 100–109 (2016)

    Article  Google Scholar 

  20. R. Kumar, R. Kumar, S. Shehzad, A. Chamkha, Optimal treatment of stratified Carreau and Casson nanofluids flows in Darcy-Forchheimer porous space over porous matrix. Appl. Math. Mech. 41(11), 1651–1670 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. S. U. Choi, J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, Tech. rep., Argonne National Lab.(ANL), Argonne, IL (United States) (1995)

  22. Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow 21(1), 58–64 (2000)

    Article  Google Scholar 

  23. D.P. Kulkarni, D.K. Das, R.S. Vajjha, Application of nanofluids in heating buildings and reducing pollution. Appl. Energy 86(12), 2566–2573 (2009)

    Article  Google Scholar 

  24. S. Choudhary, A. Sachdeva, P. Kumar, Investigation of the stability of MgO nanofluid and its effect on the thermal performance of flat plate solar collector. Renewable Energy 147, 1801–1814 (2020)

    Article  Google Scholar 

  25. H. Shokouhmand, M. Ghazvini, J. Shabanian, Performance analysis of using nanofluids in microchannel heat sink in different flow regimes and its simulation using artificial neural network. Proc World Congr Eng 3, 1–6 (2008)

    Google Scholar 

  26. X. Ma, F. Su, J. Chen, T. Bai, Z. Han, Enhancement of bubble absorption process using a CNTs-ammonia binary nanofluid. Int. Commun. Heat Mass Transfer 36(7), 657–660 (2009)

    Article  Google Scholar 

  27. W. Abbas, M. Magdy, Heat and mass transfer analysis of nanofluid flow based on \(Cu\), \(Al_2 O_3\), and \(Ti O_2\) over a moving rotating plate and impact of various nanoparticle shapes. Math. Probl. Eng. 2020, 1–12 (2020)

    Article  Google Scholar 

  28. A. Abbas, M. Ashraf, H. Ahmad, K. Ghachem, Z. Ullah, A. Hussanan, T. Labidi, L. Kolsi, Computational analysis of darcy-forchheimer relation, reduced gravity, and external applied magnetic field influence on radiative fluid flow and heat transfer past a sphere: Finite difference method. Heliyon 9(5), 1–12 (2023)

    Article  Google Scholar 

  29. D. Li, F. Labropulu, I. Pop, Oblique stagnation-point flow of a viscoelastic fluid with heat transfer. Int. J. Non-Linear Mech. 44(10), 1024–1030 (2009)

    Article  ADS  MATH  Google Scholar 

  30. A. Abbas, A. Noreen, M.A. Ali, M. Ashraf, E. Alzahrani, R. Marzouki, M. Goodarzi, Solar radiation over a roof in the presence of temperature-dependent thermal conductivity of a casson flow for energy saving in buildings. Sustain Energy Technol Assess (2022). https://doi.org/10.1016/j.seta.2022.102606

    Article  Google Scholar 

  31. A. Abbas, A. Wakif, M. Shafique, H. Ahmad, Q. Ulain, T. Muhammad, Thermal and mass aspects of maxwell fluid flows over a moving inclined surface via generalized fourier’s and fick’s laws. Waves Random Complex Med (2023). https://doi.org/10.1080/17455030.2023.2198612

    Article  Google Scholar 

  32. R. Kumar, T. Sharma, K. Vajravelu, Melting heat transport in a mixed convective squeeze flow of a hybrid nanofluid with interfacial nanolayer effects. ZAMM J Appl Math Mech 103(3), 1–18 (2023)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the constructive suggestions received from the learned Reviewers which led to definite improvement in the paper. The third author acknowledges financial support in the form of fellowship from Central University of Himachal Pradesh, Dharamshala, India for pursuing the research degree. This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444) for the author K.S. Nisar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kottakkaran S. Nisar.

Ethics declarations

Conflicts of interest

The authors have no conflicts to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhiman, S., Sharma, T., Singh, K. et al. Dual stratification and cross-diffusion effects on the non-orthogonal stagnation point flow of a nanofluid over an oscillating surface. Eur. Phys. J. Plus 138, 831 (2023). https://doi.org/10.1140/epjp/s13360-023-04465-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04465-5

Navigation