Skip to main content
Log in

Gold coated microstructures as a platform for the preparation of semiconductor-based hybrid 3D micro-nano-architectures

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, three types of microstructures are argued as substrates for electrochemical deposition of Au nanodots. They include: (a) aero-GaN consisting of hollow GaN microtetrapods, (b) microdomains of pores with a controlled design produced by anodization of InP wafers, and (c) patterned microdomains composed of strips with alternating electrical conductivity in GaN crystals grown by hydride vapor phase epitaxy. Uniform deposition of Au nanodots with controlled density is demonstrated by using pulsed electroplating, the voltage pulse width and amplitude as well as the pause between pulses and the conductivity of the substrate serving as adjustable parameters. The morphology of the produced hybrid microarchitectures was investigated by scanning electron microscopy. The explored microstructures are proposed as platforms for the development of complex 3D hybrid micro-nano-architectures via the vapor–liquid–solid deposition of various semiconductor nanowires with Au nanodots as catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright © 2023 with permission from John Wiley and Sons [58]

Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author.

References

  1. G. Miao, D. Zhang, Stages in the catalyst-free InP nanowire growth on silicon (100) by metal organic chemical vapor deposition. Nanoscale Res. Lett. 7, 321 (2012). https://doi.org/10.1186/1556-276X-7-321

    Article  ADS  Google Scholar 

  2. J. Wang, S.R. Plissard, M.A. Verheijen, L.-F. Feiner, A. Cavalli, E.P.A.M. Bakkers, Reversible switching of InP nanowire growth direction by catalyst engineering. Nano Lett. 13, 3802–3806 (2013). https://doi.org/10.1021/nl401767b

    Article  ADS  Google Scholar 

  3. S. Bhunia, T. Kawamura, S. Fujikawa, H. Nakashima, K. Furukawa, K. Torimitsu, Y. Watanabe, Vapor–liquid–solid growth of vertically aligned InP nanowires by metalorganic vapor phase epitaxy. Thin Solid Films 464–465, 244–247 (2004). https://doi.org/10.1016/j.tsf.2004.06.101

    Article  ADS  Google Scholar 

  4. A.M. Shafi, S. Das, V. Khayrudinov, E.-X. Ding, M.G. Uddin, F. Ahmed, Z. Sun, H. Lipsanen, Direct epitaxial growth of InP nanowires on MoS2 with strong nonlinear optical response. Chem. Mater. 34, 9055–9061 (2022). https://doi.org/10.1021/acs.chemmater.2c01602

    Article  Google Scholar 

  5. J. Liu, H. Nie, B. Yan, K. Yang, H. Yang, V. Khayrudinov, H. Lipsanen, B. Zhang, J. He, Nonlinear optical absorption properties of InP nanowires and applications as a saturable absorber. Photon. Res. PRJ 8, 1035–1041 (2020). https://doi.org/10.1364/PRJ.389669

    Article  Google Scholar 

  6. A. Jaffal, P. Regreny, G. Patriarche, N. Chauvin, M. Gendry, Density-controlled growth of vertical InP nanowires on Si(111) substrates. Nanotechnology 31, 354003 (2020). https://doi.org/10.1088/1361-6528/ab9475

    Article  Google Scholar 

  7. M.H. Hadj Alouane, O. Nasr, H. Khmissi, B. Ilahi, G. Patriarche, M.M. Ahmad, M. Gendry, C. Bru-Chevallier, N. Chauvin, Temperature dependence of optical properties of InAs/InP quantum rod-nanowires grown on Si substrate. J. Lumin. 231, 117814 (2021). https://doi.org/10.1016/j.jlumin.2020.117814

    Article  Google Scholar 

  8. G. Zhang, K. Tateno, T. Sogawa, H. Gotoh, Diameter-tailored telecom-band luminescence in InP/InAs heterostructure nanowires grown on InP (111)B substrate with continuously-modulated diameter from microscale to nanoscale. Nanotechnology 29, 155202 (2018). https://doi.org/10.1088/1361-6528/aaab17

    Article  ADS  Google Scholar 

  9. K. Tateno, G. Zhang, H. Gotoh, T. Sogawa, VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures. Nano Lett. 12, 2888–2893 (2012). https://doi.org/10.1021/nl300482n

    Article  ADS  Google Scholar 

  10. I. Verma, S. Salimian, V. Zannier, S. Heun, F. Rossi, D. Ercolani, F. Beltram, L. Sorba, High-mobility free-standing InSb nanoflags grown on InP nanowire stems for quantum devices. ACS Appl. Nano Mater. 4, 5825–5833 (2021). https://doi.org/10.1021/acsanm.1c00734

    Article  Google Scholar 

  11. V.G. Dubrovskii, T. Xu, A.D. Álvarez, S.R. Plissard, P. Caroff, F. Glas, B. Grandidier, Self-equilibration of the diameter of Ga-catalyzed GaAs nanowires. Nano Lett. 15, 5580–5584 (2015). https://doi.org/10.1021/acs.nanolett.5b02226

    Article  ADS  Google Scholar 

  12. S. Vorathamrong, S. Panyakeow, S. Ratanathammaphan, P. Praserthdam, Surface evolution of native silicon oxide layer and its effects on the growth of self-assisted VLS GaAs nanowires. AIP Adv. 9, 025318 (2019). https://doi.org/10.1063/1.5084344

    Article  ADS  Google Scholar 

  13. H. Küpers, R.B. Lewis, A. Tahraoui, M. Matalla, O. Krüger, F. Bastiman, H. Riechert, L. Geelhaar, Diameter evolution of selective area grown Ga-assisted GaAs nanowires. Nano Res. 11, 2885–2893 (2018). https://doi.org/10.1007/s12274-018-1984-1

    Article  Google Scholar 

  14. Y. André, K. Lekhal, P. Hoggan, G. Avit, F. Cadiz, A. Rowe, D. Paget, E. Petit, C. Leroux, A. Trassoudaine, M. Réda Ramdani, G. Monier, D. Colas, R. Ajib, D. Castelluci, E. Gil, Vapor liquid solid-hydride vapor phase epitaxy (VLS-HVPE) growth of ultra-long defect-free GaAs nanowires: Ab initio simulations supporting center nucleation. J. Chem. Phys. 140, 194706 (2014). https://doi.org/10.1063/1.4874875

    Article  ADS  Google Scholar 

  15. C. Blumberg, L. Liborius, J. Ackermann, F.-J. Tegude, A. Poloczek, W. Prost, N. Weimann, Spatially controlled VLS epitaxy of gallium arsenide nanowires on gallium nitride layers. CrystEngComm 22, 1239–1250 (2020). https://doi.org/10.1039/C9CE01926J

    Article  Google Scholar 

  16. C.B. Maliakkal, D. Jacobsson, M. Tornberg, A.R. Persson, J. Johansson, R. Wallenberg, K.A. Dick, In situ analysis of catalyst composition during gold catalyzed GaAs nanowire growth. Nat. Commun. 10, 4577 (2019). https://doi.org/10.1038/s41467-019-12437-6

    Article  ADS  Google Scholar 

  17. M. Oliva, G. Gao, E. Luna, L. Geelhaar, R.B. Lewis, Axial GaAs/Ga(As, Bi) nanowire heterostructures. Nanotechnology 30, 425601 (2019). https://doi.org/10.1088/1361-6528/ab3209

    Article  ADS  Google Scholar 

  18. J. Bauer, V. Gottschalch, H. Paetzelt, G. Wagner, VLS growth of GaAs/(InGa)As/GaAs axial double-heterostructure nanowires by MOVPE. J. Cryst. Growth 310, 5106–5110 (2008). https://doi.org/10.1016/j.jcrysgro.2008.07.059

    Article  ADS  Google Scholar 

  19. M. Scuderi, P. Prete, N. Lovergine, C. Spinella, G. Nicotra, Effects of VLS and VS mechanisms during shell growth in GaAs-AlGaAs core-shell nanowires investigated by transmission electron microscopy. Mater. Sci. Semicond. Process. 65, 108–112 (2017). https://doi.org/10.1016/j.mssp.2016.11.018

    Article  Google Scholar 

  20. D.-D. Wei, S.-X. Shi, C. Zhou, X.-T. Zhang, P.-P. Chen, J.-T. Xie, F. Tian, J. Zou, Formation of GaAs/GaSb core–shell heterostructured nanowires grown by molecular-beam epitaxy. Crystals 7, 94 (2017). https://doi.org/10.3390/cryst7040094

    Article  Google Scholar 

  21. R. Popovitz-Biro, A. Kretinin, P. Von Huth, H. Shtrikman, InAs/GaAs core–shell nanowires. Cryst. Growth Des. 11, 3858–3865 (2011). https://doi.org/10.1021/cg200393y

    Article  Google Scholar 

  22. V.V. Fedorov, Y. Berdnikov, N.V. Sibirev, A.D. Bolshakov, S.V. Fedina, G.A. Sapunov, L.N. Dvoretckaia, G. Cirlin, D.A. Kirilenko, M. Tchernycheva, I.S. Mukhin, Tailoring morphology and vertical yield of self-catalyzed GaP nanowires on template-free Si substrates. Nanomaterials 11, 1949 (2021). https://doi.org/10.3390/nano11081949

    Article  Google Scholar 

  23. G. Zhang, K. Tateno, T. Sogawa, H. Nakano, Growth and characterization of GaP nanowires on Si substrate. J. Appl. Phys. 103, 014301 (2008). https://doi.org/10.1063/1.2828165

    Article  ADS  Google Scholar 

  24. J.P. Boulanger, R.R. LaPierre, Patterned gold-assisted growth of GaP nanowires on Si. Semicond. Sci. Technol. 27, 035002 (2012). https://doi.org/10.1088/0268-1242/27/3/035002

    Article  ADS  Google Scholar 

  25. M. Steidl, M. Wu, K. Peh, P. Kleinschmidt, E. Spiecker, T. Hannappel, Impact of N incorporation on VLS growth of GaP(N) nanowires utilizing UDMH. Nanoscale Res. Lett. 13, 417 (2018). https://doi.org/10.1186/s11671-018-2833-6

    Article  ADS  Google Scholar 

  26. S. Lee, W. Wen, Q. Cheek, S. Maldonado, Comparison of GaP nanowires grown from Au and Sn vapor–liquid–solid catalysts as photoelectrode materials. J. Cryst. Growth 482, 36–43 (2018). https://doi.org/10.1016/j.jcrysgro.2017.10.021

    Article  ADS  Google Scholar 

  27. M. Hocevar, G. Immink, M. Verheijen, N. Akopian, V. Zwiller, L. Kouwenhoven, E. Bakkers, Growth and optical properties of axial hybrid III–V/silicon nanowires. Nat. Commun. 3, 1266 (2012). https://doi.org/10.1038/ncomms2277

    Article  ADS  Google Scholar 

  28. M. Steidl, K. Schwarzburg, B. Galiana, T. Kups, O. Supplie, P. Kleinschmidt, G. Lilienkamp, T. Hannappel, MOVPE growth of GaP/GaPN core–shell nanowires: N incorporation, morphology and crystal structure. Nanotechnology 30, 104002 (2019). https://doi.org/10.1088/1361-6528/aaf607

    Article  ADS  Google Scholar 

  29. V. Purushothaman, V. Ramakrishnan, K. Jeganathan, Interplay of VLS and VS growth mechanism for GaN nanowires by a self-catalytic approach. RSC Adv. 2, 4802–4806 (2012). https://doi.org/10.1039/C2RA01000C

    Article  ADS  Google Scholar 

  30. A. Waseem, M.A. Johar, M.A. Hassan, I.V. Bagal, A. Abdullah, J.-S. Ha, J.K. Lee, S.-W. Ryu, GaN nanowire growth promoted by In–Ga–Au alloy catalyst with emphasis on agglomeration temperature and in composition. ACS Omega 6, 3173–3185 (2021). https://doi.org/10.1021/acsomega.0c05587

    Article  Google Scholar 

  31. A. Rothman, J. Maniš, V.G. Dubrovskii, T. Šikola, J. Mach, E. Joselevich, Kinetics of guided growth of horizontal GaN nanowires on flat and faceted sapphire surfaces. Nanomaterials 11, 624 (2021). https://doi.org/10.3390/nano11030624

    Article  Google Scholar 

  32. M. Zervos, A. Othonos, Gallium hydride vapor phase epitaxy of GaN nanowires. Nanoscale Res. Lett. 6, 262 (2011). https://doi.org/10.1186/1556-276X-6-262

    Article  ADS  Google Scholar 

  33. K.-L. Wu, Y. Chou, C.-C. Su, C.-C. Yang, W.-I. Lee, Y.-C. Chou, Controlling bottom-up rapid growth of single crystalline gallium nitride nanowires on silicon. Sci. Rep. 7, 17942 (2017). https://doi.org/10.1038/s41598-017-17980-0

    Article  ADS  Google Scholar 

  34. A. Abdullah, M.A. Kulkarni, H. Thaalbi, F. Tariq, S.-W. Ryu, Epitaxial growth of 1D GaN-based heterostructures on various substrates for photonic and energy applications. Nanoscale Adv. 5, 1023–1042 (2023). https://doi.org/10.1039/D2NA00711H

    Article  ADS  Google Scholar 

  35. G. Zhu, Y. Zhou, S. Wang, R. Yang, Y. Ding, X. Wang, Y. Bando, Z. Lin Wang, Synthesis of vertically aligned ultra-long ZnO nanowires on heterogeneous substrates with catalyst at the root. Nanotechnology 23, 055604 (2012). https://doi.org/10.1088/0957-4484/23/5/055604

    Article  ADS  Google Scholar 

  36. K. Govatsi, A. Chrissanthopoulos, V. Dracopoulos, S.N. Yannopoulos, The influence of Au film thickness and annealing conditions on the VLS-assisted growth of ZnO nanostructures. Nanotechnology 25, 215601 (2014). https://doi.org/10.1088/0957-4484/25/21/215601

    Article  ADS  Google Scholar 

  37. C. Baratto, M. Ferroni, E. Comini, G. Faglia, S. Kaciulis, S.K. Balijepalli, G. Sberveglieri, Vapour phase nucleation of ZnO nanowires on GaN: growth habit, interface study and optical properties. RSC Adv. 6, 15087–15093 (2016). https://doi.org/10.1039/C5RA25019F

    Article  ADS  Google Scholar 

  38. Y. Kawai, M. Sakai, K. Hara, T. Kouno, Selectively enhanced microarea crystal growth of ZnO nano- and microwires on GaN on sapphire substrates by mist chemical vapor deposition. J. Ceram. Soc. Jpn. 130, 857–860 (2022). https://doi.org/10.2109/jcersj2.22060

    Article  Google Scholar 

  39. O.W. Kennedy, E.R. White, M.S.P. Shaffer, P.A. Warburton, Vapour–liquid–solid growth of ZnO-ZnMgO core–shell nanowires by gold-catalysed molecular beam epitaxy. Nanotechnology 30, 194001 (2019). https://doi.org/10.1088/1361-6528/ab011c

    Article  ADS  Google Scholar 

  40. M. Lin, T. Sudhiranjan, C. Boothroyd, K.P. Loh, Influence of Au catalyst on the growth of ZnS nanowires. Chem. Phys. Lett. 400, 175–178 (2004). https://doi.org/10.1016/j.cplett.2004.10.115

    Article  ADS  Google Scholar 

  41. M. Hafeez, S. Rehman, U. Manzoor, M.A. Khan, A.S. Bhatti, Catalyst driven optical properties of the self-assembled ZnS nanostructures. Phys. Chem. Chem. Phys. 15, 9726–9734 (2013). https://doi.org/10.1039/C3CP50534K

    Article  Google Scholar 

  42. Q. An, X. Meng, K. Xiong, Y. Qiu, W. Lin, One-step fabrication of single-crystalline ZnS nanotubes with a novel hollow structure and large surface area for photodetector devices. Nanotechnology 28, 105502 (2017). https://doi.org/10.1088/1361-6528/28/10/105502

    Article  ADS  Google Scholar 

  43. S. Kumar, F. Fossard, G. Amiri, J.-M. Chauveau, V. Sallet, MOCVD growth and structural properties of ZnS nanowires: a case study of polytypism. Nanomaterials 12, 2323 (2022). https://doi.org/10.3390/nano12142323

    Article  Google Scholar 

  44. J.H. Kim, S.C. Kim, D.H. Kim, K.H. Oh, W.-K. Hong, T.-S. Bae, H.-S. Chung, Fabrication and characterization of ZnS/diamond-like carbon core–shell nanowires. J. Nanomater. 2016, e4726868 (2016). https://doi.org/10.1155/2016/4726868

    Article  Google Scholar 

  45. D. Moore, J.R. Morber, R.L. Snyder, Z.L. Wang, Growth of ultralong ZnS/SiO2 Core−shell nanowires by volume and surface diffusion VLS process. J. Phys. Chem. C 112, 2895–2903 (2008). https://doi.org/10.1021/jp709903b

    Article  Google Scholar 

  46. E. Butanovs, A. Kuzmin, S. Piskunov, K. Smits, A. Kalinko, B. Polyakov, Synthesis and characterization of GaN/ReS2, ZnS/ReS2 and ZnO/ReS2 core/shell nanowire heterostructures. Appl. Surf. Sci. 536, 147841 (2021). https://doi.org/10.1016/j.apsusc.2020.147841

    Article  Google Scholar 

  47. Y.K. Mishra, S. Kaps, A. Schuchardt, I. Paulowicz, X. Jin, D. Gedamu, S. Freitag, M. Claus, S. Wille, A. Kovalev, S.N. Gorb, R. Adelung, Fabrication of macroscopically flexible and highly porous 3D semiconductor networks from interpenetrating nanostructures by a simple flame transport approach. Part. Part. Syst. Charact. 30, 775–783 (2013). https://doi.org/10.1002/ppsc.201300197

    Article  Google Scholar 

  48. I. Tiginyanu, T. Braniste, D. Smazna, M. Deng, F. Schütt, A. Schuchardt, M.A. Stevens-Kalceff, S. Raevschi, U. Schürmann, L. Kienle, N.M. Pugno, Y.K. Mishra, R. Adelung, Self-organized and self-propelled aero-GaN with dual hydrophilic-hydrophobic behaviour. Nano Energy 56, 759–769 (2019). https://doi.org/10.1016/j.nanoen.2018.11.049

    Article  Google Scholar 

  49. E.I. Monaico, E.V. Monaico, V.V. Ursaki, I.M. Tiginyanu, Controlled electroplating of noble metals on III–V semiconductor nanotemplates fabricated by anodic etching of bulk substrates. Coatings 12, 1521 (2022). https://doi.org/10.3390/coatings12101521

    Article  Google Scholar 

  50. I. Plesco, T. Braniste, N. Wolff, L. Gorceac, V. Duppel, B. Cinic, Y.K. Mishra, A. Sarua, R. Adelung, L. Kienle, I. Tiginyanu, Aero-ZnS architectures with dual hydrophilic-hydrophobic properties for microfluidic applications. APL Mater. 8, 061105 (2020). https://doi.org/10.1063/5.0010222

    Article  ADS  Google Scholar 

  51. I. Plesco, V. Ciobanu, T. Braniste, V. Ursaki, F. Rasch, A. Sarua, S. Raevschi, R. Adelung, J. Dutta, I. Tiginyanu, Highly porous and ultra-lightweight aero-Ga2O3: enhancement of photocatalytic activity by noble metals. Materials 14, 1985 (2021). https://doi.org/10.3390/ma14081985

    Article  ADS  Google Scholar 

  52. V. Ciobanu, V.V. Ursaki, S. Lehmann, T. Braniste, S. Raevschi, V.V. Zalamai, E.V. Monaico, P. Colpo, K. Nielsch, I.M. Tiginyanu, Aero-TiO2 prepared on the basis of networks of ZnO tetrapods. Crystals 12, 1753 (2022). https://doi.org/10.3390/cryst12121753

    Article  Google Scholar 

  53. I. Tiginyanu, E. Monaico, K. Nielsch, Self-assembled monolayer of Au nanodots deposited on porous semiconductor structures. ECS Electrochem. Lett. 4, D8 (2015). https://doi.org/10.1149/2.0041504eel

    Article  Google Scholar 

  54. E.V. Monaico, I.M. Tiginyanu, V.V. Ursaki, K. Nielsch, D. Balan, M. Prodana, M. Enachescu, Gold electroplating as a tool for assessing the conductivity of InP nanostructures fabricated by anodic etching of crystalline substrates. J. Electrochem. Soc. 164, D179 (2017). https://doi.org/10.1149/2.1071704jes

    Article  Google Scholar 

  55. E. Monaico, I. Tiginyanu, V. Ursaki, Porous semiconductor compounds. Semicond. Sci. Technol. 35, 103001 (2020). https://doi.org/10.1088/1361-6641/ab9477

    Article  ADS  Google Scholar 

  56. E. Monaico, E.I. Monaico, V.V. Ursaki, I.M. Tiginyanu, K. Nielsch, Electrochemical deposition by design of metal nanostructures. Surf. Eng. Appl. Electrochem. 55, 367–372 (2019). https://doi.org/10.3103/S1068375519040070

    Article  Google Scholar 

  57. I.M. Tiginyanu, V.V. Ursaki, E. Monaico, M. Enachi, V.V. Sergentu, G. Colibaba, D.D. Nedeoglo, A. Cojocaru, H. Föll, Quasi-ordered networks of metal nanotubes embedded in semiconductor matrices for photonic applications. J. Nanoelectron. Optoelectron. 6, 463–472 (2011). https://doi.org/10.1166/jno.2011.1197

    Article  Google Scholar 

  58. E.V. Monaico, E.I. Monaico, V.V. Ursaki, I.M. Tiginyanu, Porous semiconductor compounds with engineered morphology as a platform for various applications. Phys. Status Solidi Rapid Res. Lett. (2023). https://doi.org/10.1002/pssr.202300039

    Article  Google Scholar 

  59. I. Tiginyanu, E. Monaico, E. Monaico, Ordered arrays of metal nanotubes in semiconductor envelope. Electrochem. Commun. 10, 731–734 (2008). https://doi.org/10.1016/j.elecom.2008.02.029

    Article  Google Scholar 

  60. I. Tiginyanu, M.A. Stevens-Kalceff, A. Sarua, T. Braniste, E. Monaico, V. Popa, H.D. Andrade, J.O. Thomas, S. Raevschi, K. Schulte, R. Adelung, Self-organized three-dimensional nanostructured architectures in bulk GaN generated by spatial modulation of doping. ECS J. Solid State Sci. Technol. 5, P218 (2016). https://doi.org/10.1149/2.0091605jss

    Article  Google Scholar 

  61. E. Monaico, C. Moise, G. Mihai, V.V. Ursaki, K. Leistner, I.M. Tiginyanu, M. Enachescu, K. Nielsch, Towards uniform electrochemical porosification of bulk HVPE-grown GaN. J. Electrochem. Soc. 166, H3159 (2019). https://doi.org/10.1149/2.0251905jes

    Article  Google Scholar 

  62. N. Wolff, P. Jordt, T. Braniste, V. Popa, E. Monaico, V. Ursaki, A. Petraru, R. Adelung, B.M. Murphy, L. Kienle, I. Tiginyanu, Modulation of electrical conductivity and lattice distortions in bulk HVPE-grown GaN. ECS J. Solid State Sci. Technol. 8, Q141 (2019). https://doi.org/10.1149/2.0041908jss

    Article  Google Scholar 

  63. N. Wolff, V. Ciobanu, M. Enachi, M. Kamp, T. Braniste, V. Duppel, S. Shree, S. Raevschi, M. Medina-Sánchez, R. Adelung, O.G. Schmidt, L. Kienle, I. Tiginyanu, Advanced hybrid GaN/ZnO nanoarchitectured microtubes for fluorescent micromotors driven by UV light. Small 16, 1905141 (2020). https://doi.org/10.1002/smll.201905141

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the research team from the Christian-Albrechts University of Kiel in Germany (R. Adelung) for providing the as-grown ZnO microtetrapods.

Funding

This research was partially funded by the National Agency for Research and Development of Moldova under the Grant #20.80009.5007.20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard V. Monaico.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest. The funding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monaico, E.V., Ursaki, V.V. & Tiginyanu, I.M. Gold coated microstructures as a platform for the preparation of semiconductor-based hybrid 3D micro-nano-architectures. Eur. Phys. J. Plus 138, 827 (2023). https://doi.org/10.1140/epjp/s13360-023-04462-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04462-8

Navigation