Abstract
In this paper, three types of microstructures are argued as substrates for electrochemical deposition of Au nanodots. They include: (a) aero-GaN consisting of hollow GaN microtetrapods, (b) microdomains of pores with a controlled design produced by anodization of InP wafers, and (c) patterned microdomains composed of strips with alternating electrical conductivity in GaN crystals grown by hydride vapor phase epitaxy. Uniform deposition of Au nanodots with controlled density is demonstrated by using pulsed electroplating, the voltage pulse width and amplitude as well as the pause between pulses and the conductivity of the substrate serving as adjustable parameters. The morphology of the produced hybrid microarchitectures was investigated by scanning electron microscopy. The explored microstructures are proposed as platforms for the development of complex 3D hybrid micro-nano-architectures via the vapor–liquid–solid deposition of various semiconductor nanowires with Au nanodots as catalysts.
Similar content being viewed by others
Data availability
The data presented in this study are available on request from the corresponding author.
References
G. Miao, D. Zhang, Stages in the catalyst-free InP nanowire growth on silicon (100) by metal organic chemical vapor deposition. Nanoscale Res. Lett. 7, 321 (2012). https://doi.org/10.1186/1556-276X-7-321
J. Wang, S.R. Plissard, M.A. Verheijen, L.-F. Feiner, A. Cavalli, E.P.A.M. Bakkers, Reversible switching of InP nanowire growth direction by catalyst engineering. Nano Lett. 13, 3802–3806 (2013). https://doi.org/10.1021/nl401767b
S. Bhunia, T. Kawamura, S. Fujikawa, H. Nakashima, K. Furukawa, K. Torimitsu, Y. Watanabe, Vapor–liquid–solid growth of vertically aligned InP nanowires by metalorganic vapor phase epitaxy. Thin Solid Films 464–465, 244–247 (2004). https://doi.org/10.1016/j.tsf.2004.06.101
A.M. Shafi, S. Das, V. Khayrudinov, E.-X. Ding, M.G. Uddin, F. Ahmed, Z. Sun, H. Lipsanen, Direct epitaxial growth of InP nanowires on MoS2 with strong nonlinear optical response. Chem. Mater. 34, 9055–9061 (2022). https://doi.org/10.1021/acs.chemmater.2c01602
J. Liu, H. Nie, B. Yan, K. Yang, H. Yang, V. Khayrudinov, H. Lipsanen, B. Zhang, J. He, Nonlinear optical absorption properties of InP nanowires and applications as a saturable absorber. Photon. Res. PRJ 8, 1035–1041 (2020). https://doi.org/10.1364/PRJ.389669
A. Jaffal, P. Regreny, G. Patriarche, N. Chauvin, M. Gendry, Density-controlled growth of vertical InP nanowires on Si(111) substrates. Nanotechnology 31, 354003 (2020). https://doi.org/10.1088/1361-6528/ab9475
M.H. Hadj Alouane, O. Nasr, H. Khmissi, B. Ilahi, G. Patriarche, M.M. Ahmad, M. Gendry, C. Bru-Chevallier, N. Chauvin, Temperature dependence of optical properties of InAs/InP quantum rod-nanowires grown on Si substrate. J. Lumin. 231, 117814 (2021). https://doi.org/10.1016/j.jlumin.2020.117814
G. Zhang, K. Tateno, T. Sogawa, H. Gotoh, Diameter-tailored telecom-band luminescence in InP/InAs heterostructure nanowires grown on InP (111)B substrate with continuously-modulated diameter from microscale to nanoscale. Nanotechnology 29, 155202 (2018). https://doi.org/10.1088/1361-6528/aaab17
K. Tateno, G. Zhang, H. Gotoh, T. Sogawa, VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures. Nano Lett. 12, 2888–2893 (2012). https://doi.org/10.1021/nl300482n
I. Verma, S. Salimian, V. Zannier, S. Heun, F. Rossi, D. Ercolani, F. Beltram, L. Sorba, High-mobility free-standing InSb nanoflags grown on InP nanowire stems for quantum devices. ACS Appl. Nano Mater. 4, 5825–5833 (2021). https://doi.org/10.1021/acsanm.1c00734
V.G. Dubrovskii, T. Xu, A.D. Álvarez, S.R. Plissard, P. Caroff, F. Glas, B. Grandidier, Self-equilibration of the diameter of Ga-catalyzed GaAs nanowires. Nano Lett. 15, 5580–5584 (2015). https://doi.org/10.1021/acs.nanolett.5b02226
S. Vorathamrong, S. Panyakeow, S. Ratanathammaphan, P. Praserthdam, Surface evolution of native silicon oxide layer and its effects on the growth of self-assisted VLS GaAs nanowires. AIP Adv. 9, 025318 (2019). https://doi.org/10.1063/1.5084344
H. Küpers, R.B. Lewis, A. Tahraoui, M. Matalla, O. Krüger, F. Bastiman, H. Riechert, L. Geelhaar, Diameter evolution of selective area grown Ga-assisted GaAs nanowires. Nano Res. 11, 2885–2893 (2018). https://doi.org/10.1007/s12274-018-1984-1
Y. André, K. Lekhal, P. Hoggan, G. Avit, F. Cadiz, A. Rowe, D. Paget, E. Petit, C. Leroux, A. Trassoudaine, M. Réda Ramdani, G. Monier, D. Colas, R. Ajib, D. Castelluci, E. Gil, Vapor liquid solid-hydride vapor phase epitaxy (VLS-HVPE) growth of ultra-long defect-free GaAs nanowires: Ab initio simulations supporting center nucleation. J. Chem. Phys. 140, 194706 (2014). https://doi.org/10.1063/1.4874875
C. Blumberg, L. Liborius, J. Ackermann, F.-J. Tegude, A. Poloczek, W. Prost, N. Weimann, Spatially controlled VLS epitaxy of gallium arsenide nanowires on gallium nitride layers. CrystEngComm 22, 1239–1250 (2020). https://doi.org/10.1039/C9CE01926J
C.B. Maliakkal, D. Jacobsson, M. Tornberg, A.R. Persson, J. Johansson, R. Wallenberg, K.A. Dick, In situ analysis of catalyst composition during gold catalyzed GaAs nanowire growth. Nat. Commun. 10, 4577 (2019). https://doi.org/10.1038/s41467-019-12437-6
M. Oliva, G. Gao, E. Luna, L. Geelhaar, R.B. Lewis, Axial GaAs/Ga(As, Bi) nanowire heterostructures. Nanotechnology 30, 425601 (2019). https://doi.org/10.1088/1361-6528/ab3209
J. Bauer, V. Gottschalch, H. Paetzelt, G. Wagner, VLS growth of GaAs/(InGa)As/GaAs axial double-heterostructure nanowires by MOVPE. J. Cryst. Growth 310, 5106–5110 (2008). https://doi.org/10.1016/j.jcrysgro.2008.07.059
M. Scuderi, P. Prete, N. Lovergine, C. Spinella, G. Nicotra, Effects of VLS and VS mechanisms during shell growth in GaAs-AlGaAs core-shell nanowires investigated by transmission electron microscopy. Mater. Sci. Semicond. Process. 65, 108–112 (2017). https://doi.org/10.1016/j.mssp.2016.11.018
D.-D. Wei, S.-X. Shi, C. Zhou, X.-T. Zhang, P.-P. Chen, J.-T. Xie, F. Tian, J. Zou, Formation of GaAs/GaSb core–shell heterostructured nanowires grown by molecular-beam epitaxy. Crystals 7, 94 (2017). https://doi.org/10.3390/cryst7040094
R. Popovitz-Biro, A. Kretinin, P. Von Huth, H. Shtrikman, InAs/GaAs core–shell nanowires. Cryst. Growth Des. 11, 3858–3865 (2011). https://doi.org/10.1021/cg200393y
V.V. Fedorov, Y. Berdnikov, N.V. Sibirev, A.D. Bolshakov, S.V. Fedina, G.A. Sapunov, L.N. Dvoretckaia, G. Cirlin, D.A. Kirilenko, M. Tchernycheva, I.S. Mukhin, Tailoring morphology and vertical yield of self-catalyzed GaP nanowires on template-free Si substrates. Nanomaterials 11, 1949 (2021). https://doi.org/10.3390/nano11081949
G. Zhang, K. Tateno, T. Sogawa, H. Nakano, Growth and characterization of GaP nanowires on Si substrate. J. Appl. Phys. 103, 014301 (2008). https://doi.org/10.1063/1.2828165
J.P. Boulanger, R.R. LaPierre, Patterned gold-assisted growth of GaP nanowires on Si. Semicond. Sci. Technol. 27, 035002 (2012). https://doi.org/10.1088/0268-1242/27/3/035002
M. Steidl, M. Wu, K. Peh, P. Kleinschmidt, E. Spiecker, T. Hannappel, Impact of N incorporation on VLS growth of GaP(N) nanowires utilizing UDMH. Nanoscale Res. Lett. 13, 417 (2018). https://doi.org/10.1186/s11671-018-2833-6
S. Lee, W. Wen, Q. Cheek, S. Maldonado, Comparison of GaP nanowires grown from Au and Sn vapor–liquid–solid catalysts as photoelectrode materials. J. Cryst. Growth 482, 36–43 (2018). https://doi.org/10.1016/j.jcrysgro.2017.10.021
M. Hocevar, G. Immink, M. Verheijen, N. Akopian, V. Zwiller, L. Kouwenhoven, E. Bakkers, Growth and optical properties of axial hybrid III–V/silicon nanowires. Nat. Commun. 3, 1266 (2012). https://doi.org/10.1038/ncomms2277
M. Steidl, K. Schwarzburg, B. Galiana, T. Kups, O. Supplie, P. Kleinschmidt, G. Lilienkamp, T. Hannappel, MOVPE growth of GaP/GaPN core–shell nanowires: N incorporation, morphology and crystal structure. Nanotechnology 30, 104002 (2019). https://doi.org/10.1088/1361-6528/aaf607
V. Purushothaman, V. Ramakrishnan, K. Jeganathan, Interplay of VLS and VS growth mechanism for GaN nanowires by a self-catalytic approach. RSC Adv. 2, 4802–4806 (2012). https://doi.org/10.1039/C2RA01000C
A. Waseem, M.A. Johar, M.A. Hassan, I.V. Bagal, A. Abdullah, J.-S. Ha, J.K. Lee, S.-W. Ryu, GaN nanowire growth promoted by In–Ga–Au alloy catalyst with emphasis on agglomeration temperature and in composition. ACS Omega 6, 3173–3185 (2021). https://doi.org/10.1021/acsomega.0c05587
A. Rothman, J. Maniš, V.G. Dubrovskii, T. Šikola, J. Mach, E. Joselevich, Kinetics of guided growth of horizontal GaN nanowires on flat and faceted sapphire surfaces. Nanomaterials 11, 624 (2021). https://doi.org/10.3390/nano11030624
M. Zervos, A. Othonos, Gallium hydride vapor phase epitaxy of GaN nanowires. Nanoscale Res. Lett. 6, 262 (2011). https://doi.org/10.1186/1556-276X-6-262
K.-L. Wu, Y. Chou, C.-C. Su, C.-C. Yang, W.-I. Lee, Y.-C. Chou, Controlling bottom-up rapid growth of single crystalline gallium nitride nanowires on silicon. Sci. Rep. 7, 17942 (2017). https://doi.org/10.1038/s41598-017-17980-0
A. Abdullah, M.A. Kulkarni, H. Thaalbi, F. Tariq, S.-W. Ryu, Epitaxial growth of 1D GaN-based heterostructures on various substrates for photonic and energy applications. Nanoscale Adv. 5, 1023–1042 (2023). https://doi.org/10.1039/D2NA00711H
G. Zhu, Y. Zhou, S. Wang, R. Yang, Y. Ding, X. Wang, Y. Bando, Z. Lin Wang, Synthesis of vertically aligned ultra-long ZnO nanowires on heterogeneous substrates with catalyst at the root. Nanotechnology 23, 055604 (2012). https://doi.org/10.1088/0957-4484/23/5/055604
K. Govatsi, A. Chrissanthopoulos, V. Dracopoulos, S.N. Yannopoulos, The influence of Au film thickness and annealing conditions on the VLS-assisted growth of ZnO nanostructures. Nanotechnology 25, 215601 (2014). https://doi.org/10.1088/0957-4484/25/21/215601
C. Baratto, M. Ferroni, E. Comini, G. Faglia, S. Kaciulis, S.K. Balijepalli, G. Sberveglieri, Vapour phase nucleation of ZnO nanowires on GaN: growth habit, interface study and optical properties. RSC Adv. 6, 15087–15093 (2016). https://doi.org/10.1039/C5RA25019F
Y. Kawai, M. Sakai, K. Hara, T. Kouno, Selectively enhanced microarea crystal growth of ZnO nano- and microwires on GaN on sapphire substrates by mist chemical vapor deposition. J. Ceram. Soc. Jpn. 130, 857–860 (2022). https://doi.org/10.2109/jcersj2.22060
O.W. Kennedy, E.R. White, M.S.P. Shaffer, P.A. Warburton, Vapour–liquid–solid growth of ZnO-ZnMgO core–shell nanowires by gold-catalysed molecular beam epitaxy. Nanotechnology 30, 194001 (2019). https://doi.org/10.1088/1361-6528/ab011c
M. Lin, T. Sudhiranjan, C. Boothroyd, K.P. Loh, Influence of Au catalyst on the growth of ZnS nanowires. Chem. Phys. Lett. 400, 175–178 (2004). https://doi.org/10.1016/j.cplett.2004.10.115
M. Hafeez, S. Rehman, U. Manzoor, M.A. Khan, A.S. Bhatti, Catalyst driven optical properties of the self-assembled ZnS nanostructures. Phys. Chem. Chem. Phys. 15, 9726–9734 (2013). https://doi.org/10.1039/C3CP50534K
Q. An, X. Meng, K. Xiong, Y. Qiu, W. Lin, One-step fabrication of single-crystalline ZnS nanotubes with a novel hollow structure and large surface area for photodetector devices. Nanotechnology 28, 105502 (2017). https://doi.org/10.1088/1361-6528/28/10/105502
S. Kumar, F. Fossard, G. Amiri, J.-M. Chauveau, V. Sallet, MOCVD growth and structural properties of ZnS nanowires: a case study of polytypism. Nanomaterials 12, 2323 (2022). https://doi.org/10.3390/nano12142323
J.H. Kim, S.C. Kim, D.H. Kim, K.H. Oh, W.-K. Hong, T.-S. Bae, H.-S. Chung, Fabrication and characterization of ZnS/diamond-like carbon core–shell nanowires. J. Nanomater. 2016, e4726868 (2016). https://doi.org/10.1155/2016/4726868
D. Moore, J.R. Morber, R.L. Snyder, Z.L. Wang, Growth of ultralong ZnS/SiO2 Core−shell nanowires by volume and surface diffusion VLS process. J. Phys. Chem. C 112, 2895–2903 (2008). https://doi.org/10.1021/jp709903b
E. Butanovs, A. Kuzmin, S. Piskunov, K. Smits, A. Kalinko, B. Polyakov, Synthesis and characterization of GaN/ReS2, ZnS/ReS2 and ZnO/ReS2 core/shell nanowire heterostructures. Appl. Surf. Sci. 536, 147841 (2021). https://doi.org/10.1016/j.apsusc.2020.147841
Y.K. Mishra, S. Kaps, A. Schuchardt, I. Paulowicz, X. Jin, D. Gedamu, S. Freitag, M. Claus, S. Wille, A. Kovalev, S.N. Gorb, R. Adelung, Fabrication of macroscopically flexible and highly porous 3D semiconductor networks from interpenetrating nanostructures by a simple flame transport approach. Part. Part. Syst. Charact. 30, 775–783 (2013). https://doi.org/10.1002/ppsc.201300197
I. Tiginyanu, T. Braniste, D. Smazna, M. Deng, F. Schütt, A. Schuchardt, M.A. Stevens-Kalceff, S. Raevschi, U. Schürmann, L. Kienle, N.M. Pugno, Y.K. Mishra, R. Adelung, Self-organized and self-propelled aero-GaN with dual hydrophilic-hydrophobic behaviour. Nano Energy 56, 759–769 (2019). https://doi.org/10.1016/j.nanoen.2018.11.049
E.I. Monaico, E.V. Monaico, V.V. Ursaki, I.M. Tiginyanu, Controlled electroplating of noble metals on III–V semiconductor nanotemplates fabricated by anodic etching of bulk substrates. Coatings 12, 1521 (2022). https://doi.org/10.3390/coatings12101521
I. Plesco, T. Braniste, N. Wolff, L. Gorceac, V. Duppel, B. Cinic, Y.K. Mishra, A. Sarua, R. Adelung, L. Kienle, I. Tiginyanu, Aero-ZnS architectures with dual hydrophilic-hydrophobic properties for microfluidic applications. APL Mater. 8, 061105 (2020). https://doi.org/10.1063/5.0010222
I. Plesco, V. Ciobanu, T. Braniste, V. Ursaki, F. Rasch, A. Sarua, S. Raevschi, R. Adelung, J. Dutta, I. Tiginyanu, Highly porous and ultra-lightweight aero-Ga2O3: enhancement of photocatalytic activity by noble metals. Materials 14, 1985 (2021). https://doi.org/10.3390/ma14081985
V. Ciobanu, V.V. Ursaki, S. Lehmann, T. Braniste, S. Raevschi, V.V. Zalamai, E.V. Monaico, P. Colpo, K. Nielsch, I.M. Tiginyanu, Aero-TiO2 prepared on the basis of networks of ZnO tetrapods. Crystals 12, 1753 (2022). https://doi.org/10.3390/cryst12121753
I. Tiginyanu, E. Monaico, K. Nielsch, Self-assembled monolayer of Au nanodots deposited on porous semiconductor structures. ECS Electrochem. Lett. 4, D8 (2015). https://doi.org/10.1149/2.0041504eel
E.V. Monaico, I.M. Tiginyanu, V.V. Ursaki, K. Nielsch, D. Balan, M. Prodana, M. Enachescu, Gold electroplating as a tool for assessing the conductivity of InP nanostructures fabricated by anodic etching of crystalline substrates. J. Electrochem. Soc. 164, D179 (2017). https://doi.org/10.1149/2.1071704jes
E. Monaico, I. Tiginyanu, V. Ursaki, Porous semiconductor compounds. Semicond. Sci. Technol. 35, 103001 (2020). https://doi.org/10.1088/1361-6641/ab9477
E. Monaico, E.I. Monaico, V.V. Ursaki, I.M. Tiginyanu, K. Nielsch, Electrochemical deposition by design of metal nanostructures. Surf. Eng. Appl. Electrochem. 55, 367–372 (2019). https://doi.org/10.3103/S1068375519040070
I.M. Tiginyanu, V.V. Ursaki, E. Monaico, M. Enachi, V.V. Sergentu, G. Colibaba, D.D. Nedeoglo, A. Cojocaru, H. Föll, Quasi-ordered networks of metal nanotubes embedded in semiconductor matrices for photonic applications. J. Nanoelectron. Optoelectron. 6, 463–472 (2011). https://doi.org/10.1166/jno.2011.1197
E.V. Monaico, E.I. Monaico, V.V. Ursaki, I.M. Tiginyanu, Porous semiconductor compounds with engineered morphology as a platform for various applications. Phys. Status Solidi Rapid Res. Lett. (2023). https://doi.org/10.1002/pssr.202300039
I. Tiginyanu, E. Monaico, E. Monaico, Ordered arrays of metal nanotubes in semiconductor envelope. Electrochem. Commun. 10, 731–734 (2008). https://doi.org/10.1016/j.elecom.2008.02.029
I. Tiginyanu, M.A. Stevens-Kalceff, A. Sarua, T. Braniste, E. Monaico, V. Popa, H.D. Andrade, J.O. Thomas, S. Raevschi, K. Schulte, R. Adelung, Self-organized three-dimensional nanostructured architectures in bulk GaN generated by spatial modulation of doping. ECS J. Solid State Sci. Technol. 5, P218 (2016). https://doi.org/10.1149/2.0091605jss
E. Monaico, C. Moise, G. Mihai, V.V. Ursaki, K. Leistner, I.M. Tiginyanu, M. Enachescu, K. Nielsch, Towards uniform electrochemical porosification of bulk HVPE-grown GaN. J. Electrochem. Soc. 166, H3159 (2019). https://doi.org/10.1149/2.0251905jes
N. Wolff, P. Jordt, T. Braniste, V. Popa, E. Monaico, V. Ursaki, A. Petraru, R. Adelung, B.M. Murphy, L. Kienle, I. Tiginyanu, Modulation of electrical conductivity and lattice distortions in bulk HVPE-grown GaN. ECS J. Solid State Sci. Technol. 8, Q141 (2019). https://doi.org/10.1149/2.0041908jss
N. Wolff, V. Ciobanu, M. Enachi, M. Kamp, T. Braniste, V. Duppel, S. Shree, S. Raevschi, M. Medina-Sánchez, R. Adelung, O.G. Schmidt, L. Kienle, I. Tiginyanu, Advanced hybrid GaN/ZnO nanoarchitectured microtubes for fluorescent micromotors driven by UV light. Small 16, 1905141 (2020). https://doi.org/10.1002/smll.201905141
Acknowledgements
The authors acknowledge the research team from the Christian-Albrechts University of Kiel in Germany (R. Adelung) for providing the as-grown ZnO microtetrapods.
Funding
This research was partially funded by the National Agency for Research and Development of Moldova under the Grant #20.80009.5007.20.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflicts of interest. The funding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Monaico, E.V., Ursaki, V.V. & Tiginyanu, I.M. Gold coated microstructures as a platform for the preparation of semiconductor-based hybrid 3D micro-nano-architectures. Eur. Phys. J. Plus 138, 827 (2023). https://doi.org/10.1140/epjp/s13360-023-04462-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/s13360-023-04462-8