Skip to main content
Log in

Numerical investigation of acoustic streaming vortex and operating parameters in curved microchannel: driven by standing surface acoustic wave

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The employment of ultrasonic fields to control particles has been received attention for its efficient role in harmless applications such as separation, sorting, and trapping. The capability of this technology in related applications is improved by better analyzing and visualizing the interfacing parameters. In this research, the operating parameters, including working frequency, phase difference, displacement amplitude, cross section, and microchannel material in a water-filled microchannel actuated by standing surface acoustic wave, are studied. Perturbation theory is employed to derive the first-order acoustic field and time-averaged second-order governing equations. Also, appropriate and lately introduced boundary conditions are precisely applied to capture the fluid flow and particle motion. Results show the half-wave resonance model in Pyrex wall can effectively sort particles in regions where Acoustic Streaming (AS) is not disruptive. The new design of the microchannel introduces a different pattern in polystyrene aggregation, which can be applied for further acoustic sorting and separation. Additionally, by increasing frequency in Pyrex, stronger streaming is inclined close to the walls which can be applied to mix sheath flows with the buffer flows in cell lysis application. Comparison of different cross sections for different material at different frequencies significantly help to find a trade-off between Acoustic Radiation Force (ARF) and AS. Operating parameters effect on the AS and ARF is visualized and compared to reveal each case potential for sorting, separation, trapping, and mixing application. This quantitative simulation will help researchers choose the appropriate material and correct resonance frequency for lateral biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Numerical modeling files of the current study are available from the corresponding author on reasonable request.]

References

  1. D.R. Reyes, D. Iossifidis, P.-A. Auroux, A. Manz, Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem. 74(12), 2623–2636 (2002)

    Article  Google Scholar 

  2. P.-A. Auroux, D. Iossifidis, D.R. Reyes, A. Manz, Micro total analysis systems. 2. Analytical standard operations and applications. Anal. Chem. 74(12), 2637–2652 (2002)

    Article  Google Scholar 

  3. A. Farahinia, W. Zhang, I. Badea, Novel microfluidic approaches to circulating tumor cell separation and sorting of blood cells: a review. J. Sci. Adv. Mater. Device 6, 303–320 (2021)

    Article  Google Scholar 

  4. D.K. Deka, S. Pati, Influence of wettability and initial size on the merging dynamics of droplet within a y-shaped bifurcating channel. Fluid Dyn. Res. 53, 035506 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  5. C.W. Shields IV., C.D. Reyes, G.P. López, Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15(5), 1230–1249 (2015)

    Article  Google Scholar 

  6. X. Bai, B. Song, Z. Chen, W. Zhang, D. Chen, Y. Dai, S. Liang, D. Zhang, Z. Zhao, L. Feng, Postoperative evaluation of tumours based on label-free acoustic separation of circulating tumour cells by microstreaming. Lab Chip 21(14), 2721–2729 (2021)

    Article  Google Scholar 

  7. A. Neild, S. Oberti, F. Beyeler, J. Dual, B.J. Nelson, A micro-particle positioning technique combining an ultrasonic manipulator and a microgripper. J. Micromech. Microeng. 16(8), 1562 (2006)

    Article  ADS  Google Scholar 

  8. A. Wixforth, C. Strobl, C. Gauer, A. Toegl, J. Scriba, Zv. Guttenberg, Acoustic manipulation of small droplets. Anal. Bioanal. Chem. 379(7), 982–991 (2004)

    Article  Google Scholar 

  9. L.Y. Yeo, J.R. Friend, Surface acoustic wave microfluidics. Annu. Rev. Fluid Mech. 46, 379–406 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. A. Urbansky, F. Olm, S. Scheding, T. Laurell, A. Lenshof, Label-free separation of leukocyte subpopulations using high throughput multiplex acoustophoresis. Lab Chip 19(8), 1406–1416 (2019)

    Article  Google Scholar 

  11. P. Augustsson, C. Magnusson, M. Nordin, H. Lilja, T. Laurell, Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis. Anal. Chem. 84(18), 7954–7962 (2012)

    Article  Google Scholar 

  12. A. Nilsson, F. Petersson, H. Jönsson, T. Laurell, Acoustic control of suspended particles in micro fluidic chips. Lab Chip 4(2), 131–135 (2004)

    Article  Google Scholar 

  13. X. Ding, Z. Peng, S.-C.S. Lin, M. Geri, S. Li, P. Li, Y. Chen, M. Dao, S. Suresh, T.J. Huang, Cell separation using tilted-angle standing surface acoustic waves. Proc. Natl. Acad. Sci. 111(36), 12992–12997 (2014)

    Article  ADS  Google Scholar 

  14. M. Wu, C. Chen, Z. Wang, H. Bachman, Y. Ouyang, P.-H. Huang, Y. Sadovsky, T.J. Huang, Separating extracellular vesicles and lipoproteins via acoustofluidics. Lab Chip 19(7), 1174–1182 (2019)

    Article  Google Scholar 

  15. M. Wu, P.-H. Huang, R. Zhang, Z. Mao, C. Chen, G. Kemeny, P. Li, A.V. Lee, R. Gyanchandani, A.J. Armstrong et al., Circulating tumor cell phenotyping via high-throughput acoustic separation. Small 14(32), 1801131 (2018)

    Article  Google Scholar 

  16. A. Shams Taleghani, M. Sheikholeslam Noori, Numerical investigation of coalescence phenomena, affected by surface acoustic waves. Eur. Phys. J. Plus 137(8), 975 (2022)

    Article  Google Scholar 

  17. P.B. Muller, R. Barnkob, M.J.H. Jensen, H. Bruus, A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab Chip 12(22), 4617–4627 (2012)

    Article  Google Scholar 

  18. J. Lei, M. Hill, P. Glynne-Jones, Numerical simulation of 3d boundary-driven acoustic streaming in microfluidic devices. Lab Chip 14(3), 532–541 (2014)

    Article  Google Scholar 

  19. S. Liu, Y. Yang, Z. Ni, X. Guo, L. Luo, J. Tu, D. Zhang et al., Investigation into the effect of acoustic radiation force and acoustic streaming on particle patterning in acoustic standing wave fields. Sensors 17(7), 1664 (2017)

    Article  ADS  Google Scholar 

  20. P.B. Muller, H. Bruus, Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels. Phys. Rev. E 90(4), 043016 (2014)

    Article  ADS  Google Scholar 

  21. A. Tahmasebipour, L. Friedrich, M. Begley, H. Bruus, C. Meinhart, Toward optimal acoustophoretic microparticle manipulation by exploiting asymmetry. J. Acoust. Soc. Am. 148(1), 359–373 (2020)

    Article  ADS  Google Scholar 

  22. B.G. Winckelmann, H. Bruus, Theory and simulation of electroosmotic suppression of acoustic streaming. J. Acoust. Soc. Am. 149(6), 3917–3928 (2021)

    Article  ADS  Google Scholar 

  23. J.S. Bach, H. Bruus, Suppression of acoustic streaming in shape-optimized channels. Phys. Rev. Lett. 124(21), 214501 (2020)

    Article  ADS  Google Scholar 

  24. J. Lei, F. Cheng, K. Li, Z. Guo, Two-dimensional concentration of microparticles using bulk acousto-microfluidics. Appl. Phys. Lett. 116(3), 033104 (2020)

    Article  ADS  Google Scholar 

  25. J. Lei, F. Cheng, K. Li, Numerical simulation of boundary-driven acoustic streaming in microfluidic channels with circular cross-sections. Micromachines 11(3), 240 (2020)

    Article  Google Scholar 

  26. D.J. Collins, R. O’Rorke, C. Devendran, Z. Ma, J. Han, A. Neild, Y. Ai, Self-aligned acoustofluidic particle focusing and patterning in microfluidic channels from channel-based acoustic waveguides. Phys. Rev. Lett. 120(7), 074502 (2018)

    Article  ADS  Google Scholar 

  27. C. Devendran, T. Albrecht, J. Brenker, T. Alan, A. Neild, The importance of travelling wave components in standing surface acoustic wave (ssaw) systems. Lab Chip 16(19), 3756–3766 (2016)

    Article  Google Scholar 

  28. M.R. Dezfuli, A. Shahidian, M. Ghassemi, Quantitative assessment of parallel acoustofluidic device. J. Acoust. Soc. Am. 150(1), 233–240 (2021)

    Article  ADS  Google Scholar 

  29. N.R. Skov, P. Sehgal, B.J. Kirby, H. Bruus, Three-dimensional numerical modeling of surface-acoustic-wave devices: acoustophoresis of micro-and nanoparticles including streaming. Phys. Rev. Appl. 12(4), 044028 (2019)

    Article  ADS  Google Scholar 

  30. J.-C. Hsu, C.-L. Chao, Full-wave modeling of micro-acoustofluidic devices driven by standing surface acoustic waves for microparticle acoustophoresis. J. Appl. Phys. 128(12), 124502 (2020)

    Article  ADS  Google Scholar 

  31. Y. Zhou, Comparison of numerical models for bulk and surface acoustic wave-induced acoustophoresis in a microchannel. Eur. Phys. J. Plus 135(9), 696 (2020)

    Article  Google Scholar 

  32. R. Barnkob, N. Nama, L. Ren, T.J. Huang, F. Costanzo, C.J. Kähler, Acoustically driven fluid and particle motion in confined and leaky systems. Phys. Rev. Appl. 9(1), 014027 (2018)

    Article  ADS  Google Scholar 

  33. A. Vargas-Jiménez, M. Camacho, J. Muñoz, I. González, A 3d analysis of the acoustic radiation force in microfluidic channel with rectangular geometry. Wave Motion 101, 102701 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. C. Sun, F. Wu, Y. Fu, D.J. Wallis, R. Mikhaylov, F. Yuan, D. Liang, Z. Xie, H. Wang, R. Tao et al., Thin film gallium nitride (gan) based acoustofluidic tweezer: modelling and microparticle manipulation. Ultrasonics 108, 106202 (2020)

    Article  Google Scholar 

  35. E. Los Reyes, V. Acosta, P. Carreras, A. Pinto, I. González, Three-dimensional numerical analysis as a tool for optimization of acoustophoretic separation in polymeric chips. J. Acoust. Soc. Am. 150(1), 646–656 (2021)

    Article  ADS  Google Scholar 

  36. R.P. Moiseyenko, H. Bruus, Whole-system ultrasound resonances as the basis for acoustophoresis in all-polymer microfluidic devices. Phys. Rev. Appl. 11(1), 014014 (2019)

    Article  ADS  Google Scholar 

  37. W.N. Bodé, L. Jiang, T. Laurell, H. Bruus, Microparticle acoustophoresis in aluminum-based acoustofluidic devices with pdms covers. Micromachines 11(3), 292 (2020)

    Article  Google Scholar 

  38. C. Devendran, D.J. Collins, A. Neild, The role of channel height and actuation method on particle manipulation in surface acoustic wave (saw)-driven microfluidic devices. Microfluid. Nanofluid. 26(2), 9 (2022)

    Article  Google Scholar 

  39. X. Liu, X. Chen, Z. Yang, H. Xia, C. Zhang, X. Wei, Surface acoustic wave based microfluidic devices for biological applications. Sensors Diagnost. 2, 507–528 (2023)

    Article  Google Scholar 

  40. M. Ali, J. Park, Ultrasonic surface acoustic wave-assisted separation of microscale droplets with varying acoustic impedance. Ultrason. Sonochem. 93, 106305 (2023)

    Article  Google Scholar 

  41. G. Liu, W. Shen, Y. Li, H. Zhao, X. Li, C. Wang, F. He, Continuous separation of particles with different densities based on standing surface acoustic waves. Sens. Actuat. A 341, 113589 (2022)

    Article  Google Scholar 

  42. N. Nama, R. Barnkob, Z. Mao, C.J. Kähler, F. Costanzo, T.J. Huang, Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves. Lab Chip 15(12), 2700–2709 (2015)

    Article  Google Scholar 

  43. Y.A. Cengel, M.A. Boles, M. Kanoglu, Thermodynamics: An Engineering Approach, vol. 5 (McGraw-Hill, New York, 2011)

    Google Scholar 

  44. W.M. Haynes, CRC Handbook of Chemistry and Physics (CRC Press, Hoboken, 2014)

    Book  Google Scholar 

  45. D. Armani, C. Liu, N. Aluru, Re-configurable fluid circuits by pdms elastomer micromachining. In: Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No. 99CH36291), pp. 222–227 (1999). IEEE

  46. J.K. Tsou, J. Liu, A.I. Barakat, M.F. Insana, Role of ultrasonic shear rate estimation errors in assessing inflammatory response and vascular risk. Ultrasound Med. Biol. 34(6), 963–972 (2008)

    Article  Google Scholar 

  47. N.R. Skov, H. Bruus, Modeling of microdevices for saw-based acoustophoresis-a study of boundary conditions. Micromachines 7(10), 182 (2016)

    Article  Google Scholar 

  48. K.-K. Wong, Properties of Lithium Niobate vol. 28. IET (2002)

  49. P.H. Mott, J.R. Dorgan, C. Roland, The bulk modulus and poisson’s ratio of “incompressible’’ materials. J. Sound Vib. 312(4–5), 572–575 (2008)

    Article  ADS  Google Scholar 

  50. H. Bruus, Acoustofluidics 7: the acoustic radiation force on small particles. Lab Chip 12(6), 1014–1021 (2012)

    Article  Google Scholar 

  51. M. Wiklund, R. Green, M. Ohlin, Acoustofluidics 14: applications of acoustic streaming in microfluidic devices. Lab Chip 12(14), 2438–2451 (2012)

    Article  Google Scholar 

  52. H. Bruus, Theoretical Microfluidics, vol. 18 (Oxford University Press, Oxford, 2008)

    Google Scholar 

  53. W.L. Nyborg, Acoustic streaming due to attenuated plane waves. J. Acoust. Soc. Am. 25(1), 68–75 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  54. D. Köster, Numerical simulation of acoustic streaming on surface acoustic wave-driven biochips. SIAM J. Sci. Comput. 29(6), 2352–2380 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. M. Settnes, H. Bruus, Forces acting on a small particle in an acoustical field in a viscous fluid. Phys. Rev. E 85(1), 016327 (2012)

    Article  ADS  Google Scholar 

  56. J. David, N. Cheeke, Fundamentals and applications of ultrasonic waves (2017)

  57. S. Sachs, M. Baloochi, C. Cierpka, J. König, On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves-part I. Lab Chip 22(10), 2011–2027 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azadeh Shahidian.

Ethics declarations

Conflict of interest

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dezfuli, M.R., Shahidian, A. Numerical investigation of acoustic streaming vortex and operating parameters in curved microchannel: driven by standing surface acoustic wave. Eur. Phys. J. Plus 138, 835 (2023). https://doi.org/10.1140/epjp/s13360-023-04460-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04460-w

Navigation