Abstract
In order to characterize the mass density of superheavy elements, we solve numerically the relativistic Thomas–Fermi model of an atom. To obtain a range of mass densities for superheavy matter, this model is supplemented with an estimation of the number of electrons shared between individual atoms. Based on our computation, we expect that elements in the island of nuclear stability around \(Z = 164\) will populate a mass density range of 36.0–68.4 g/cm\(^{3}\). We then extend our method to the study of macroscopic alpha particle nuclear matter condensate drops.
This is a preview of subscription content, access via your institution.






Data availability
No data associated in the manuscript.
References
B. Fricke, W. Greiner, J. Waber, The continuation of the periodic table up to \(Z = 172\). The chemistry of superheavy elements. Theor. Chim. Acta 21, 235–260 (1971)
B. Müller, J. Rafelski, Stabilization of the charged vacuum created by very strong electrical fields in nuclear matter. Phys. Rev. Lett. 34, 349 (1975)
J. Rafelski, L. Labun, J. Birrell, Compact ultradense matter impactors. Phys. Rev. Lett. 110, 111102 (2013)
C. Dietl, L. Labun, J. Rafelski, Properties of gravitationally bound compact ultra dense objects. Phys. Lett. B 709(3), 123–127 (2012)
D.R. Lide (ed.), Physical Constants of Organic Compounds. CRC Handbook of Chemistry and Physics, Internet Version 2005 (CRC Press, Boca Raton, 2005). http://www.hbcpnetbase.com
B. Carry, Density of asteroids. Planet. Space Sci. 73, 98–118 (2012)
J. Grumann, U. Mosel, B. Fink, W. Greiner, Investigation of the stability of superheavy nuclei around \(Z=114\) and \(Z=164\). Z. Phys. 228, 371–386 (1969)
M. Bender, P.H. Heenen, P.G. Reinhard, Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75, 121–180 (2003)
A. Sobiczewski, K. Pomorski, Description of structure and properties of superheavy nuclei. Prog. Part. Nucl. Phys. 58, 292–349 (2007)
W. Nazarewicz, M. Bender, S. Ćwiok, P.H. Heenen, A.T. Kruppa, P.G. Reinhard, T. Vertse, Theoretical description of superheavy nuclei. Nucl. Phys. A 701, 165–171 (2002)
J. Dechargé, J.-F. Berger, K. Dietrich, M.S. Weiss, Superheavy and hyperheavy nuclei in the form of bubbles or semi-bubbles. Phys. Lett. B 451, 275–282 (1999)
J. Dechargé, J.F. Berger, M. Girod, K. Dietrich, Bubbles and semi-bubbles as a new kind of superheavy nuclei. Nucl. Phys. A 716, 55–86 (2003)
A.V. Afanasjev, S.E. Agbemava, A. Gyawali, Hyperheavy nuclei: existence and stability. Phys. Lett. B 782, 533–540 (2018). https://doi.org/10.1016/j.physletb.2018.05.070. arXiv:1804.06395 [nucl-th]
S.E. Agbemava, A.V. Afanasjev, A. Taninah, A. Gyawali, Extension of the nuclear landscape to hyperheavy nuclei. Phys. Rev. C 99(3), 034316 (2019)
S.E. Agbemava, A.V. Afanasjev, Hyperheavy spherical and toroidal nuclei: the role of shell structure. Phys. Rev. C 103(3), 034323 (2021)
M. Veselský, V. Petousis, Ch.C. Moustakidis, G.A. Souliotis, A. Bonasera, Investigating the possible existence of hyper-heavy nuclei in a neutron-star environment. Phys. Rev. C 106, L012802 (2022)
J.W. Clark, E. Krotscheck, Alpha matter revisited. arXiv:2304.08543 [nucl-th]
L.D. Landau, E.M. Lifshitz, Statistical Physics, Part 1, 3rd edn. (Elsevier, Amsterdam, 1980)
J. Rafelski, L.P. Fulcher, A. Klein, Fermions and bosons interacting with arbitrarily strong external fields. Phys. Rep. 38, 227–361 (1978)
W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes; The Art of Scientific Computing, 3rd edn. (Cambridge University Press, New York, 2007)
A. Kramida, Y. Ralchenko, J. Reader, NIST ASD Team, NIST Atomic Spectra Database (ver. 5.10) (National Institute of Standards and Technology, Gaithersburg, 2022). https://physics.nist.gov/asd [2023, May 23]
J. Gyanchandani, S.K. Sikka, Physical properties of the 6d-series elements from density functional theory: close similarity to lighter transition metals. Phys. Rev. B 83, 172101 (2011)
J.D. Walecka, A theory of highly condensed matter. Ann. Phys. 83, 491–529 (1974)
K. Sun, K. Padavić, F. Yang, S. Vishveshwara, C. Lannert, Static and dynamic properties of shell-shaped condensates. Phys. Rev. A 98, 013609 (2018)
R.A. Carollo, D.C. Aveline, B. Rhyno, S. Vishveshwara, C. Lannert, J.D. Murphree, E.R. Elliott, J.R. Williams, R.J. Thompson, N. Lundblad, Observation of ultracold atomic bubbles in orbital microgravity. Nature 606, 281–286 (2022)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
LaForge, E., Price, W. & Rafelski, J. Superheavy elements and ultradense matter. Eur. Phys. J. Plus 138, 812 (2023). https://doi.org/10.1140/epjp/s13360-023-04454-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/s13360-023-04454-8