Skip to main content
Log in

Error estimation in nonlinear problems based on stress recovery in t-r-refinement strategy by isogeometric method

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this research, stress recovery methods using superconvergent points and equilibrium in patches methods have been used in solving nonlinear problems to achieve more reliable results. These two methods have been compared with the help of the isogeometric analysis method. The performance of these two methods in guiding the adaptive solution algorithm based on the movement of control points has been investigated. In the stress recovery methods, error estimation has been considered by assuming the error as a thermal gradient dependent on the energy norm. For this purpose, we carried out modeling of two nonlinear problems based on their analytical solution, and the results have shown that both stress recovery methods used in improving the network of control points have had a desirable effect. The effectiveness of the equilibrium in patches method is more than the method based on superconvergent points in achieving more accurate results, and it can be used as a suitable solution to improve the stress field.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig.11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data generated or analyzed during this study are included in this published article, and also the datasets during the current study are available from the corresponding author on reasonable request.]

Notes

  1. Non-Uniform Rational B-Splines.

  2. Isogeometric Analysis.

  3. Remesh Refinement.

  4. Thermal Gradient-based Remesh Refinement.

  5. Recovery Nonlinear Isogeometric Analysis by Equilibrium in Patches.

  6. Recovery Nonlinear Isogeometric Analysis by Superconvergent Points.

  7. Computer-Aided Design.

  8. Unbalanced forces.

  9. Element subdivision (enrichment).

  10. Voronoi tessellation.

References

  1. T.J. Hughes, J.A. Cottrell, Y. Bazilevs, Comput. Methods Appl. Mech. Eng. 194(39–41), 4135 (2005). https://doi.org/10.1016/j.cma.2004.10.008

    Article  ADS  Google Scholar 

  2. V. Gupta, A. Jameel, S.K. Verma, S. Anand, Y. Anand, Arch. Comput. Methods Eng. 30(2), 1187 (2023). https://doi.org/10.1007/s11831-022-09838-0

    Article  Google Scholar 

  3. M. Zareh, X. Qian, Comput. Methods Appl. Mech. Eng. 347, 853 (2019). https://doi.org/10.1016/j.cma.2018.12.034

    Article  ADS  Google Scholar 

  4. A. Norouzzadeh, R. Ansari, Eur. Phys. J. Plus 135(2), 264 (2020). https://doi.org/10.1140/epjp/s13360-020-00257-3

    Article  Google Scholar 

  5. G. Huynh, X. Zhuang, H. Bui, G. Meschke, H. Nguyen-Xuan, Finite Elements Anal Des. 173, 103389 (2020). https://doi.org/10.1016/j.finel.2020.103389

    Article  MathSciNet  Google Scholar 

  6. Z. Wu, S. Wang, R. Xiao, L. Yu, J. Comput. Des. Eng. 7(4), 514 (2020). https://doi.org/10.1093/jcde/qwaa001

    Article  Google Scholar 

  7. Y. Chen, Z. Deng, Y. Huang, Int. J. Numer. Anal. Model. 19(1), 126–155 (2022)

    MathSciNet  Google Scholar 

  8. O.C. Zienkiewicz, P. Morice, The finite element method in engineering science (McGraw-Hill, 1971)

    Google Scholar 

  9. J. Cottrell, T. Hughes, A. Reali, Comput. Methods Appl. Mech. Eng. 196(41–44), 4160 (2007). https://doi.org/10.1016/j.cma.2007.04.007

    Article  ADS  Google Scholar 

  10. Y. Ji, M. Wang, Y. Yu, C. Zhu, J. Syst. Sci. Complex. (2022). https://doi.org/10.1007/s11424-022-1293-3

    Article  Google Scholar 

  11. Y. Ji, M.-Y. Wang, Y. Wang, C.-G. Zhu, Comput. Aided Des. (2022). https://doi.org/10.1016/j.cad.2022.103305

    Article  Google Scholar 

  12. G. Xu, B. Li, L. Shu, L. Chen, J. Xu, T. Khajah, J. Comput. Appl. Math. 351, 186 (2019). https://doi.org/10.1016/j.cam.2018.11.003

    Article  MathSciNet  Google Scholar 

  13. A. Mirzakhani, B. Hassani, A. Ganjali, Acta Mech. 226(10), 3425 (2015). https://doi.org/10.1007/s00707-015-1376-5

    Article  MathSciNet  Google Scholar 

  14. O.C. Zienkiewicz, J.Z. Zhu, Int. J. Numer. Meth. Eng. 33(7), 1331 (1992). https://doi.org/10.1002/nme.1620330702

    Article  Google Scholar 

  15. B. Hassani, A. Ganjali, M. Tavakkoli, Eur. J. Mech. A Solids 31(1), 101 (2012). https://doi.org/10.1016/j.euromechsol.2011.08.001

    Article  ADS  Google Scholar 

  16. B. Boroomand, O.C. Zienkiewicz, Int. J. Numer. Meth. Eng. 40(1), 137 (1997). https://doi.org/10.1002/(SICI)1097-0207(19970115)40:1%3C137::AID-NME57%3E3.0.CO;2-5

    Article  Google Scholar 

  17. A. Ganjali, B. Hassani, Adv. Appl. Math. Mech. (2020). https://doi.org/10.4208/aamm.OA-2018-0245A

    Article  Google Scholar 

  18. B. Boroomand, O. Zienkiewicz, Comput. Methods Appl. Mech. Eng. 176(1–4), 127 (1999). https://doi.org/10.1016/S0045-7825(98)00333-8

    Article  ADS  Google Scholar 

  19. L. Piegl, W. Tiller, The NURBS book (Springer Science & Business Media, 1996). https://doi.org/10.1007/978-3-642-59223-2

    Book  MATH  Google Scholar 

  20. D.R.J. Owen, (1980).

  21. D. Sheng, S.W. Sloan, A.J. Abbo, Int. J. Geomech. 2(4), 471 (2002). https://doi.org/10.1080/15323640208500187

    Article  Google Scholar 

  22. O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu, The finite element method: its basis and fundamentals (Elsevier, 2005)

    MATH  Google Scholar 

  23. M. Ainsworth, J.T. Oden, Numer. Math. 65(1), 23 (1993). https://doi.org/10.1007/BF01385738

    Article  MathSciNet  Google Scholar 

  24. J. Chakrabarty, Applied plasticity (Springer, 2010). https://doi.org/10.1007/978-0-387-77674-3

    Book  MATH  Google Scholar 

  25. J. Lubliner, (Macmillan, New York, 1990)

  26. E.A. de Souza Neto, D. Peric, D.R. Owen, Computational methods for plasticity: theory and applications (John Wiley & Sons, 2011)

    Google Scholar 

  27. R. Hill, The mathematical theory of plasticity (Oxford University Press, 1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Ganjali.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahini, A., Ganjali, A. & Mirzakhani, A. Error estimation in nonlinear problems based on stress recovery in t-r-refinement strategy by isogeometric method. Eur. Phys. J. Plus 138, 839 (2023). https://doi.org/10.1140/epjp/s13360-023-04453-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04453-9

Navigation