Skip to main content
Log in

The massive boson accompanied by a flat wave

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Here, it is considered a simple model of the Nambu–Goldstone boson, in which the global chiral symmetry is broken spontaneously, and two particles appear as a result, one massive and one massless boson. This model leads to a nonlinear differential equation, and here, its exact solutions are introduced in the form of solitary fields. The presented solitary fields corresponding to the massive boson are normalizable, bounded, and have a reasonable asymptotic behavior, hence can be detected. To excite this bounded solitary wave, it has been shown that a simple flat wave might be incorporated into the model, coming from the vacuum fluctuations. This is while, the field related to the massless boson does not find a substitute bounded shape, and consequently cannot be expected to be observable. The rest energy of the massive boson field is calculated in terms of the frequency of the accompanying plane wave and the width of the boson fields. The presence of the accompanying flat wave might open an avenue to detect the massive boson in new ways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript.

References

  1. M. Maggiore, A Modern Introduction to Quantum Field Theory (Oxford University Press, 2005)

    MATH  Google Scholar 

  2. F. Mandal, G. Shaw, Quantum Field Theory, 2nd edn. (Wiley, 2010)

    Google Scholar 

  3. M. Kaku, Quantum Field Theory a Modern Introduction (Oxford University Press, 1993)

    Google Scholar 

  4. K.J. Biebl, M. Klein, R. Nahnhauer, Resonance production and correlations of neutral and charged pions. Ann. Phys. 490(3), 161 (1978)

    Article  Google Scholar 

  5. J. Arrington et al., Revealing the structure of light pseudoscalar mesons at the electron–ion collider. J. Phys. G 48, 075106 (2021)

    Article  ADS  Google Scholar 

  6. F.A. Aharonian, Very High Energy Cosmic Gamma Radiation: A Crucial Window on the Extreme Universe (World scientific Publishing Co. Pte Ltd, 2004)

    Book  Google Scholar 

  7. M. Ackermann et al., Detection of the characteristic pion-decay signature in supernova remnants. Science 339(6424), 807 (2013)

    Article  ADS  Google Scholar 

  8. L. Supan, G. Fischetto, G. Castelletti, Supernova remnant G46.8-0.3: a new case of interaction with molecular material. Astron. Astrophys. 664, A89 (2022)

    Article  ADS  Google Scholar 

  9. Z.-F. Cui, D. Binosi, C.D. Roberts, S.M. Schmidt, Pion charge radius from pion + electron elastic scattering data. Phys. Lett. B 822, 136631 (2021)

    Article  Google Scholar 

  10. S.D. Bass, J. Krzysiak, Vacuum energy with mass generation and Higgs bosons. Phys. Lett. B 803, 135351 (2020)

    Article  MathSciNet  Google Scholar 

  11. R.L. Davis, Goldstone bosons in string models of galaxy formation. Phys. Rev. D 32(12), 3172 (1985)

    Article  ADS  Google Scholar 

  12. C.P. Burgess, Goldstone and pseudo-Goldstone bosons in nuclear, particle and condensed-matter physics. Phys. Rep. 330(4), 193–261 (2000)

    Article  ADS  Google Scholar 

  13. H. Watanabe, H. Murayama, Redundancies in Nambu-Goldstone bosons. Phys. Rev. Lett. 110(18), 181601 (2013)

    Article  ADS  Google Scholar 

  14. D. Musso, Simplest phonons and pseudo-phonons in field theory. Eur. Phys. J. C 79(12), 986 (2019)

    Article  ADS  Google Scholar 

  15. G.F. Lange, A. Bouhon, B. Monserrat, R.J. Slager, Topological continuum charges of acoustic phonons in two dimensions and the Nambu-Goldstone theorem. Phys. Rev. B 105(6), 064301 (2022)

    Article  ADS  Google Scholar 

  16. K. Freese, J.A. Frieman, A.V. Olinto, Natural inflation with pseudo Nambu-Goldstone bosons. Phys. Rev. Lett. 65(26), 3233 (1990)

    Article  ADS  Google Scholar 

  17. J.A. Frieman, C.T. Hill, A. Stebbins, I. Waga, Cosmology with ultralight pseudo Nambu-Goldstone bosons. Phys. Rev. Lett. 75(11), 2077 (1995)

    Article  ADS  Google Scholar 

  18. K. Ishiwata, T. Toma, Probing pseudo Nambu-Goldstone boson dark matter at loop level. J. High Energy Phys. 2018(12), 1–15 (2018)

    Article  MathSciNet  Google Scholar 

  19. A. Felski, S.P. Klevansky, Fermion and meson mass generation in non-Hermitian Nambu–Jona-Lasinio models. Phys. Rev. D 103(5), 056007 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  20. N.A. Gromov, Limiting case of modified electroweak model for contracted gauge group. Phys. At. Nucl. 74, 908–913 (2011)

    Article  Google Scholar 

  21. C.D. Roberts, D.G. Richards, T. Horn, L. Chang, Insights into the emergence of mass from studies of pion and kaon structure. Progress Part. Nuclear Phys. 120, 103883 (2021)

    Article  Google Scholar 

  22. G.B. Gelmini, S. Nussinov, T. Yanagida, Does nature like Nambu-Goldstone bosons? Nuclear Phys. B 219(1), 31–40 (1983)

    Article  ADS  Google Scholar 

  23. G. Sun, Y. Cheng, X.G. He, Structure of flavor changing Goldstone boson interactions. J. High Energy Phys. 2021(4), 1–21 (2021)

    Article  MathSciNet  Google Scholar 

  24. W. Malfliet, The tanh method a tool for solving certain classes of nonlinear evolution and wave equations. J. Comput. Appl. Math. 164, 529 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. A.M. Wazwaz, The tanh method for traveling wave solutions of nonlinear equations. Appl. Math. Comput. 154, 713–723 (2004)

    MathSciNet  MATH  Google Scholar 

  26. A.M. Wazwaz, The extended tanh method for new compact and noncompact solutions for the KP-BBM and the ZK-BBM equations. Chaos Solitons Fractals 38(5), 1505 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. M.A. Abdou, The extended tanh method and its applications for solving non-linear physical models. Appl. Math. Comput. 190, 988 (2007)

    MathSciNet  MATH  Google Scholar 

  28. A.A. Soliman, Extended improved tanh-function method for solving the nonlinear physical problems. Acta Appl. Math. 104, 36–383 (2008)

    Article  MathSciNet  Google Scholar 

  29. S.A. El-Wakil, M.A. Abdou, New exact travelling wave solutions using modified extended tanh-function method. Chaos Solitons Fractals 31(4), 840 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. A.R. Seadawy, Three-dimensional nonlinear modified Zakharov–Kuznetsov equation of ion-acoustic waves in a magnetized plasma. Comput. Math. Appl. 71(1), 201–212 (2016)

    MathSciNet  MATH  Google Scholar 

  31. A. All Mamun, S.N. Ananna, P.P. Gharami, T. An, M. Asaduzzaman, The improved modified extended tanh-function method to develop the exact travelling wave solutions of a family of 3D fractional WBBM equations. Results Phys. 41, 105969 (2022)

    Article  Google Scholar 

  32. R. Rajaraman, Solitons and instantons (1989)

  33. A. Jahangiri, S. Miraboutalebi, F. Ahmadi, A.A. Masoudi, The solitary solutions of nonlinear Klein-Gordon field with minimal length. Phys. Lett. B 818, 136351 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. S. Miraboutalebi, F. Ahmadi, A. Jahangiri, Effect of RGUP on the nonlinear Klein-Gordon model with spontaneous symmetry breaking. Phys. Lett. B 833, 137270 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Miraboutalebi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahbazi, Z., Miraboutalebi, S., Ahmadi, F. et al. The massive boson accompanied by a flat wave. Eur. Phys. J. Plus 138, 824 (2023). https://doi.org/10.1140/epjp/s13360-023-04429-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04429-9

Navigation