Skip to main content
Log in

An efficient method for the total least squares problem in reduced biquaternionic electromagnetics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the theoretical explorations and numerical computations in reduced biquaternionic electromagnetics, the reduced biquaternion total least squares (RBTLS) problem is an extremely effective tool for the study of reduced biquaternionic electromagnetics and electromagnetic field theory. This paper studies for the first time the RBTLS problem by means of a complex representation of a reduced biquaternion matrix, derives the necessary and sufficient conditions for the RBTLS problem to have a reduced biquaternion solution, and gives an efficient algorithm for solving the RBTLS problem. Finally, numerical examples are presented to demonstrate the efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository.

References

  1. C. Segre, The real representations of complex elements and extension to bicomplex systems. Math. Ann. 40, 413–467 (1892)

    Article  MathSciNet  Google Scholar 

  2. X. Huang, S. Gai, Reduced biquaternion stacked denoising convolutional autoencoder for rgb-d image classification. IEEE Signal Process. Lett. 28, 1205–1209 (2021)

    Article  ADS  Google Scholar 

  3. S. Gai, Theory of reduced biquaternion sparse representation and its applications. Expert Syst. Appl. 213, 119245 (2023)

    Article  Google Scholar 

  4. S.C. Pei, J.H. Chang, J.J. Ding, Commutative reduced biquaternions and their fourier transform for signal and image processing applications. IEEE Trans. Signal Process. 52(7), 2012–2031 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. S.C. Pei, J.H. Chang, J.J. Ding, Eigenvalues and singular value decompositions of reduced biquaternion matrices. IEEE Trans. Circ. Syst. I: Reg. Pap. 55(9), 2673–2685 (2008)

    MathSciNet  Google Scholar 

  6. H.H. Kösal, Least-squares solutions of the reduced biquaternion matrix equation \(AX=B\) and their applications in colour image restoration. J. Mod. Opt. 66, 1802–1810 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  7. W.X. Ding, Y. Li, D. Wang, Special least squares solutions of the reduced biquaternion matrix equation \(AX=B\) with applications. Comput. Appl. Math. 40, 1–15 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Zhang, Z.W. Guo, G. Wang, T.S. Jiang, Algebraic techniques for least squares problems in commutative quaternionic theory. Math. Methods Appl. Sci. 43, 3513–3523 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. D. Zhang, G. Wang, V.I. Vasil’ev, T.S. Jiang, Algebraic methods for equality constrained least squares problems in commutative quaternionic theory. Math. Methods Appl. Sci. 46, 1699–1708 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  10. F. Catoni, R. Cannata, P. Zampetti, An introduction to commutative quaternions. Adv. Appl. Clifford Algebras 16, 1–28 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. S.F. Yuan, Y. Tian, M.Z. Li, On Hermitian solutions of the reduced biquaternion matrix equation \((AXB, CXD)=(E, G)\). Linear Multilinear Algebra 68(7), 1355–1373 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. N. Hikmah, M. Bahri, S. Toaha, Cramer rule and adjoint method for reduced biquaternionic linear equations. Global J. Pure Appl. Math. 11, 2247–2254 (2015)

    Google Scholar 

  13. Z.W. Guo, D. Zhang, V.I. Vasil’ev, T.S. Jiang, Algebraic techniques for Maxwell’s equations in commutative quaternionic electromagnetics. The Eur. Phys. J. Plus 137(5), 1–12 (2022)

    Article  Google Scholar 

  14. R. Agarwal, M.P. Goswami, R.P. Agarwal, K. Kesa, D.B. Venkataratnam, Solution of Maxwell’s wave equations in bicomplex space. Roman. J. Phys. 62, 115 (2017)

    Google Scholar 

  15. F. Catoni, Commutative (Segre’s) quaternion fields and relation with Maxwell equations. Adv. Appl. Clifford Algebras 18(1), 9–28 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. J.C. Maxwell, A treatise on electricity and magnetism. Clarendon press (1873)

  17. A. Gersten, A. Moalem, Maxwell’s equations, fields or potentials? J. Phys.: Conf. Series 1239(1), 012020 (2019)

    Google Scholar 

  18. A. Gersten, A. Moalem, Maxwell’s equations, quantum physics and the quantum graviton. J. Phys. Conf. Series. 330(1), 012010 (2011)

    Article  Google Scholar 

  19. T. Prodromakis, C. Papavassiliou, Engineering the Maxwell-Wagner polarization effect. Appl. Surf. Sci. 255(15), 6989–6994 (2009)

    Article  ADS  Google Scholar 

  20. Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115(3), 485 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. W.S. Weiglhofer, A. Lakhtakia, Introduction to complex mediums for optics and electromagnetics. SPIE press, (2003)

  22. T.M. Huang, H.E. Hsieh, W.W. Lin, W. Wang, Eigendecomposition of the discrete double-curl operator with application to fast eigensolver for three-dimensional photonic crystals. SIAM J. Matrix Anal. Appl. 34(2), 369–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. H.T. Anastassiu, P.E. Atlamazoglou, D.I. Kaklamani, Application of bicomplex (quaternion) algebra to fundamental electromagnetics: a lower order alternative to the Helmholtz equation. IEEE Trans. Antennas Prop. 51(8), 2130–2136 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Y. Shi, C.H. Liang, The finite-volume time-domain algorithm using least square method in solving Maxwell’s equations. J. Comput. Phys. 226(2), 1444–1457 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. C. Bacuta, J. Jacavage, K. Qirko, F.J. Sayas, Saddle point least squares iterative solvers for the time harmonic Maxwell equations. Comput. Math. Appl. 74(11), 2915–2928 (2017)

    MathSciNet  MATH  Google Scholar 

  26. J. Rahman, T.K. Sarkar, Deconvolution and total least squares in finding the impulse response of an electromagnetic system from measured data. IEEE Trans. Antennas Prop. 43(4), 416–421 (1995)

    Article  ADS  Google Scholar 

  27. D.V. Ivanov, I.L. Sandler, N.V. Chertykovtseva, Generalized total least squares for identification of electromagnetic parameters of an induction motor. J. Phys.: Conf. Series 2032(1), 012093 (2021)

    Google Scholar 

  28. S. Van Huffel, P. Lemmerling, Total least squares and errors-in-variables modeling: analysis, algorithms and applications. Springer Science & Business Media (2013)

  29. K. Hirakawa, T.W. Parks, Image denoising using total least squares. IEEE Trans. Image Process. 15(9), 2730–2742 (2006)

    Article  ADS  Google Scholar 

  30. T.S. Jiang, L. Chen, Algebraic algorithms for least squares problem in quaternionic quantum theory. Comput. Phys. Commun. 176(7), 481–485 (2007)

    Article  ADS  MATH  Google Scholar 

  31. M.H. Wang, M.S. Wei, Y. Feng, An iterative algorithm for least squares problem in quaternionic quantum theory. Comput. Phys. Commun. 179(4), 203–207 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. T.S. Jiang, Z.Z. Zhang, Z.W. Jiang, A new algebraic technique for quaternion constrained least squares problems. Adv. Appl. Clifford Algebras 28(1), 1–10 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. T.S. Jiang, X.H. Cheng, S.T. Ling, An algebraic technique for total least squares problem in quaternionic quantum theory. Appl. Math. Lett. 52, 58–63 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. G.H. Golub, C.F. Van Loan, An analysis of the total least squares problem. SIAM J. Num. Anal. 17(6), 883–893 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. M. Wei, Algebraic relations between the total least squares and least squares problems with more than one solution. Numer. Math. 62, 123–148 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Wei, The analysis for the total least squares problem with more than one solution. SIAM J. Matrix Anal. Appl. 13(3), 746–763 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  37. S. Van Huffel, J. Vandewalle, The total least squares problem: computational aspects and analysis. Society for Industrial and Applied Mathematics (1991)

  38. X.D. Zhang, Matrix analysis and applications. Cambridge University Press; 2017, pp. 329-333

  39. G.H. Golub, C.F. Van Loan, Matrix Computations. 4rd Edit., Baltimore: The Johns Hopkins University Press; 2013, pp. 320-321

Download references

Acknowledgements

The research of T. Jiang is supported by the Ministry of science and higher education of the Russian Federation, agreement (No. 075-02-2023-947, February 16, 2023). The work of V. I. Vasil’ev has been supported by the Ministry of Science and Higher Education of the Russian Federation (Grant No. FSRG-2023-0025). The research of D. Zhang and G. Wang is supported by the Russian Science Foundation grant (23-71-30013). The research of D. Zhang is supported by the Chinese Government Scholarship (CSC No. 202108370086). The research of G. Wang is supported by the Chinese Government Scholarship (CSC No. 202008370340).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongsong Jiang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Jiang, T., Wang, G. et al. An efficient method for the total least squares problem in reduced biquaternionic electromagnetics. Eur. Phys. J. Plus 138, 826 (2023). https://doi.org/10.1140/epjp/s13360-023-04419-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04419-x

Navigation