Skip to main content

Advertisement

Log in

Shannon entropy for endohedrally confined hydrogen atom embedded in Debye plasma

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Energy eigenvalues and Shannon entropy are calculated for the Endohedrally confined hydrogen atom embedded in Debye plasma. Numerov method is employed for solving Schrodinger equation. Variation of Shannon entropy with the parameters of confinement potential as well as with the Debye screening parameter is investigated. Calculations are performed for position space, momentum space and total Shannon entropy. Shannon entropy is established as an indicator of avoided crossings between the energy levels for plasma embedded Endohedrally confined systems. Novel data is presented for the energy eigenvalues and Shannon entropy of plasma embedded Endohedrally confined hydrogen atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data that support the findings of this study is available within the article.

References

  1. C.E. Shannon, Bell Syst. Tech. J. 27, 379 (1948)

    Article  Google Scholar 

  2. R.F. Nalewajski, Chem. Phy. Lett. 372, 28 (2003)

    Article  ADS  Google Scholar 

  3. K.D. Sen, Statistical complexities: application to electronic structure (Springer, Berlin/Heidelberg, 2012)

    Google Scholar 

  4. K.D. Sen, J. Chem. Phys. 123, 074110 (2005)

    Article  ADS  Google Scholar 

  5. A. Nagy, Chem. Phy. Lett. 556, 355 (2013)

    Article  ADS  Google Scholar 

  6. Y. He, Y. Chen, J. Han, Z.B. Zhu, G.X. Xiang, H.D. Liu et al., Eur. Phys. J. D 69, 283 (2015)

    Article  ADS  Google Scholar 

  7. N. Flores-Gallegos, Chem. Phy. Lett. 666, 62 (2016)

    Article  ADS  Google Scholar 

  8. S. Saha, J. Jose, Phy. Rev. A. 102, 052824 (2020)

    Article  ADS  Google Scholar 

  9. F. Verstraete, J.I. Cirac, Phys Rev B 73, 094423 (2006)

    Article  ADS  Google Scholar 

  10. L.L. Salcedo, J Math Phys 50, 012106 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Michels, J. de Boer, A. Bijl, Physica 4, 981 (1937)

    Article  ADS  Google Scholar 

  12. T. Guillot, Planet Space Sci 47, 1183 (1999)

    Article  ADS  Google Scholar 

  13. C. Laughlin, B.L. Burrows, M. Cohen, J. Phys. B 35, 701 (2002)

    Article  ADS  Google Scholar 

  14. S.J.C. Salazar, H.G. Laguna, B. Dahiya, V. Prasad, R.P. Sagar, Eur. Phys. J. D. 75, 127 (2021)

    Article  ADS  Google Scholar 

  15. S.J.C. Salazar, H.G. Laguna, V. Prasad, R.P. Sagar, Int. J. Quant. Chem. 120(11), e26188 (2020)

    Article  Google Scholar 

  16. K. Kumar, V. Prasad, Res. Phys. 21, 103796 (2021)

    Google Scholar 

  17. K. Kumar, V. Prasad, Sci. Rep. 12, 7496 (2022)

    Article  ADS  Google Scholar 

  18. W. Harneit, C. Boehme, S. Schaefer, K. Huebener, K. Fostiropoulos, K. Lips, Phys. Rev. Lett. 98, 216601 (2007)

    Article  ADS  Google Scholar 

  19. R.B. Ross, C.M. Cardona, D.M. Guldi, S.G. Sankaranarayanan, M.O. Reese, N. Kopidakis, J. Peet, B. Walker, G.C. Bazan, E.V. Keuren, B.C. Holloway, M. Drees, Nat. Mater. 8, 208 (2009)

    Article  ADS  Google Scholar 

  20. J.F. Nierengarten, New J. Chem. 28, 1177 (2004)

    Article  Google Scholar 

  21. J.P. Connerade, V.K. Dolmatov, P.A. Lakshmi, S.T. Manson, J. Phys. B: At. Mol. Opt. Phys. 32, L239 (1999)

    Article  ADS  Google Scholar 

  22. C. Martínez-Flores, R. Cabrera-Trujillo, Matter Radiat. Extrem 3, 227 (2018)

    Article  Google Scholar 

  23. S.A. Ndengué, O. Motapon, J. Phys. B 41, 045001 (2008)

    Article  ADS  Google Scholar 

  24. R. Joshi, Spec. Lett. 56, 273 (2023)

    Article  ADS  Google Scholar 

  25. S. Dabas, R. Joshi, Eur. Phys. J. D 76, 95 (2022)

    Article  ADS  Google Scholar 

  26. R. Joshi, A. Goyal, P. Kumar, M. Mohan, Eur. Phy. J. D 76, 149 (2022)

    Article  ADS  Google Scholar 

  27. N. Mukherjee, A.K. Roy, Int. J. Quan. Chem. 118, e25596 (2018)

    Article  Google Scholar 

  28. L.G. Jiao, L.R. Zan, Y.Z. Zhang, Y.K. Ho, Int. J. Quan. Chem. 117, e25375 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Rachna Joshi is thankful to AND College administration for constant motivation and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachna Joshi.

Ethics declarations

Competing interests

The author reports that there are no competing interests to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, R. Shannon entropy for endohedrally confined hydrogen atom embedded in Debye plasma. Eur. Phys. J. Plus 138, 760 (2023). https://doi.org/10.1140/epjp/s13360-023-04400-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04400-8

Navigation