Skip to main content
Log in

Entanglement polygon inequalities for pure states in qudit systems

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Entanglement is one of the important resources in many quantum tasks. And the issue of high-dimensional entangled systems is intriguing. Here we consider the entanglement distribution of higher-dimensional multipartite systems. Specifically, we show that the n-qudit pure states satisfy the entanglement polygon inequality (EPI) in terms of geometrical entanglement measure, then we offer an entanglement indicator for three-qubit pure states based on the geometrical entanglement measure. At last, we show that the EPI is not generally valid for pure states in higher-dimensional systems in terms of negativity. Nevertheless, the above inequality is valid for higher-dimensional systems in terms of concurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. C.H. Bennett, S.J. Wiesner, Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Y. Shimoni, D. Shapira, O. Biham, Entangled quantum states generated by Shor’s factoring algorithm. Phys. Rev. A 72(6), 062308 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  5. V. Coffman, J. Kundu, W.K. Wootters, Distributed entanglement. Phys. Rev. A 61(5), 052306 (2000)

    Article  ADS  Google Scholar 

  6. T.J. Osborne, F. Verstraete, General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96(22), 220503 (2006)

    Article  ADS  Google Scholar 

  7. M. Christandl, A. Winter, “squashed entanglement’’: an additive entanglement measure. J. Math. Phys. 45(3), 829–840 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Y.-K. Bai, Y.-F. Xu, Z. Wang, General monogamy relation for the entanglement of formation in multiqubit systems. Phys. Rev. Lett. 113(10), 100503 (2014)

    Article  ADS  Google Scholar 

  9. Y. Luo, T. Tian, L.-H. Shao, Y. Li, General monogamy of tsallis q-entropy entanglement in multiqubit systems. Phys. Rev. A 93(6), 062340 (2016)

    Article  ADS  Google Scholar 

  10. W. Song, Y.-K. Bai, M. Yang, M. Yang, Z.-L. Cao, General monogamy relation of multiqubit systems in terms of aared rényi-\(\alpha \) entanglement. Phys. Rev. A 93(2), 022306 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. Y.-C. Ou, Violation of monogamy inequality for higher-dimensional objects. Phys. Rev. A 75(3), 034305 (2007)

    Article  ADS  Google Scholar 

  12. N. Friis, G. Vitagliano, M. Malik, M. Huber, Entanglement certification from theory to experiment. Nat. Rev. Phys. 1(1), 72–87 (2019)

    Article  Google Scholar 

  13. N.J. Cerf, M. Bourennane, A. Karlsson, N. Gisin, Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88(12), 127902 (2002)

    Article  ADS  Google Scholar 

  14. M. Mirhosseini, O.S. Magana-Loaiza, M.N.O. Sullivan, B. Rodenburg, M. Malik, M.P. Lavery, M.J. Padgett, D.J. Gauthier, R.W. Boyd, High-dimensional quantum cryptography with twisted light. New J. Phys. 17(3), 033033 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  15. D. Cozzolino, B. Da Lio, D. Bacco, L.K. Oxenlowe, High-dimensional quantum communication: benefits, progress, and future challenges. Adv. Quantum Technol. 2(12), 1900038 (2019)

    Article  Google Scholar 

  16. Y. Wang, Z. Hu, B.C. Sanders, S. Kais, Qudits and high-dimensional quantum computing. Front. Phys. 8, 589504 (2020)

    Article  Google Scholar 

  17. M. Erhard, M. Krenn, A. Zeilinger, Advances in high-dimensional quantum entanglement. Nat. Rev. Phys. 2(7), 365–381 (2020)

    Article  Google Scholar 

  18. M. Ringbauer, M. Meth, L. Postler, R. Stricker, R. Blatt, P. Schindler, T. Monz, A universal qudit quantum processor with trapped ions. Nat. Phys. 18(9), 1053–1057 (2022)

    Article  Google Scholar 

  19. G. Gour, Y. Guo, Monogamy of entanglement without inequalities. Quantum 2, 81 (2018)

    Article  Google Scholar 

  20. X. Shi, L. Chen, M. Hu, Multilinear monogamy relations for multiqubit states. Phys. Rev. A 104(1), 012426 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  21. X.-N. Zhu, G. Bao, Z.-X. Jin, S.-M. Fei, Monogamy of entanglement for tripartite systems. Phys. Rev. A 107(5), 052404 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  22. C. Eltschka, J. Siewert, Distribution of entanglement and correlations in all finite dimensions. Quantum 2, 64 (2018)

    Article  Google Scholar 

  23. S. Imai, N. Wyderka, A. Ketterer, O. Gühne, Bound entanglement from randomized measurements. Phys. Rev. Lett. 126(15), 150501 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  24. A.A. Klyachko, Quantum marginal problem and n-representability, in Journal of Physics: Conference Series, vol. 36, no. 1 (IOP Publishing, 2006), p. 72

  25. E. Haapasalo, T. Kraft, N. Miklin, R. Uola, Quantum marginal problem and incompatibility. Quantum 5, 476 (2021)

    Article  Google Scholar 

  26. X.-D. Yu, T. Simnacher, N. Wyderka, H.C. Nguyen, O. Gühne, A complete hierarchy for the pure state marginal problem in quantum mechanics. Nat. Commun. 12(1), 1012 (2021)

    Article  ADS  Google Scholar 

  27. X.-F. Qian, M.A. Alonso, J.H. Eberly, Entanglement polygon inequality in qubit systems. New J. Phys. 20(6), 063012 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. X. Yang, Y.-H. Yang, M.-X. Luo, Entanglement polygon inequality in qudit systems. Phys. Rev. A 105(6), 062402 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  29. T.-C. Wei, P.M. Goldbart, Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A 68(4), 042307 (2003)

    Article  ADS  Google Scholar 

  30. G. Vidal, R.F. Werner, Computable measure of entanglement. Phys. Rev. A 65(3), 032314 (2002)

    Article  ADS  Google Scholar 

  31. W.K. Wootters, Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245 (1998)

    Article  ADS  MATH  Google Scholar 

  32. X. Yang, M.-X. Luo, Y.-H. Yang, S.-M. Fei, Parametrized entanglement monotone. Phys. Rev. A 103(5), 052423 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  33. K.M. Audenaert, Subadditivity of q-entropies for q> 1. J. Math. Phys. 48(8), 083507 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. X.-N. Zhu, S.-M. Fei, Entanglement monogamy relations of qubit systems. Phys. Rev. A 90(2), 024304 (2014)

    Article  ADS  Google Scholar 

  35. A. Acin, A. Andrianov, L. Costa, E. Jane, J. Latorre, R. Tarrach, Generalized schmidt decomposition and classification of three-quantum-bit states. Phys. Rev. Lett. 85(7), 1560 (2000)

    Article  ADS  Google Scholar 

  36. J. San Kim, B.C. Sanders, Generalized w-class state and its monogamy relation, in Journal of Physics A: Mathematical and Theoretical, vol. 41, no. 49 (2008) p. 495301

  37. X. Shi, L. Chen, Monogamy relations for the generalized w-class states beyond qubits. Phys. Rev. A 101(3), 032344 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  38. L.-M. Lai, S.-M. Fei, Z.-X. Wang, Tighter monogamy and polygamy relations for a superposition of the generalized w-class state and vacuum. J. Phys. A: Math. Theor. 54(42), 425301 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

X. S. was supported by the Fundamental Research Funds for the Central Universities (Grant No. ZY2306), and Funds of College of Information Science and Technology, Beijing University of Chemical Technology (Grant No. 0104/11170044115)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian Shi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X. Entanglement polygon inequalities for pure states in qudit systems. Eur. Phys. J. Plus 138, 768 (2023). https://doi.org/10.1140/epjp/s13360-023-04399-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04399-y

Navigation