Skip to main content
Log in

Shear-induced symmetry-breaking dynamical states

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We examine how shear influences the emergence of symmetry-breaking dynamical states in a globally coupled Stuart–Landau (SL) oscillator system with combined attractive and repulsive interactions. In the absence of the shear parameter, the system exhibits synchronization, nontrivial oscillation death states and oscillation death states. However, with the introduction of the shear parameter, we observe diverse dynamical patterns, including amplitude clusters, solitary states, complete synchronization and nontrivial oscillation death states when the repulsive interaction is weak. As the strength of the repulsive interaction increases, the system becomes more heterogeneous, resulting in imperfect solitary states. We also validate the analytical stability condition for the oscillation death region and compare it with the numerical boundary, finding a close match. Furthermore, we discover that the presence of shear leads to the emergence of symmetry-breaking dynamical states, specifically inhomogeneous oscillation death states and oscillatory cluster states under nonlocal coupling interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availibility statement

The data that support the findings of this study are available within the article.

References

  1. S. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (CRC Press, London, 2018)

    Book  MATH  Google Scholar 

  2. A.W. Leung, Systems of Nonlinear Partial Differential Equations: Applications to Biology and Engineering (Springer, Netherlands, 1989)

    Book  MATH  Google Scholar 

  3. T. Puu, Attractors, Bifurcations and Chaos: Nonlinear Phenomena in Economics (Springer, Berlin, 2003)

    Book  MATH  Google Scholar 

  4. M. Lakshmanan, S. Rajasekar, Nonlinear Dynamics: Integrability and Chaos (Springer, Berlin, 2003)

    Book  MATH  Google Scholar 

  5. M. Lakshmanan, K. Murali, Chaos in Nonlinear Oscillators : Controlling and Synchronization (World Scientific, Singapore, 1996)

    Book  MATH  Google Scholar 

  6. A.G. Balanov, N.B. Janson, D.E. Postnov, P.V.E. McClintock, Phys. Rev. E 65, 041105 (2002)

    Article  ADS  Google Scholar 

  7. T. Khatun, B. Bandyopadhyay, T. Banerjee, Phys. Rev. E 106, 054208 (2022)

    Article  ADS  Google Scholar 

  8. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

  9. K. Kovalenko, X. Dai, K. Alfaro-Bittner, A.M. Raigorodskii, M. Perc, S. Boccaletti, Phys. Rev. Lett. 127, 258301 (2021)

    Article  ADS  Google Scholar 

  10. A. Koseska, E. Volkov, J. Kurths, Oscillation quenching mechanisms: amplitude vs. oscillation death. Phys. Rep. 531, 173–199 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Y. Kuramoto, D. Battogtokh, Nonlinear Phenom. Complex Syst. 5, 380 (2002)

    Google Scholar 

  12. D.M. Abrams, S.H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004)

    Article  ADS  Google Scholar 

  13. K. Premalatha, V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, Phys. Rev. E 91, 052915 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. F. Parastesh, S. Jafari, H. Azarnoush, Z. Shahriari, Z. Wang, S. Boccaletti, M. Perc, Phys. Rep. 898, 1–114 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  15. I. Hussain, S. Jafari, M. Perc, D. Ghosh, Phys. Lett. A 424, 127847 (2022)

    Article  Google Scholar 

  16. K. Premalatha, V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, Phys. Rev. E 93, 052213 (2016)

    Article  ADS  Google Scholar 

  17. K. Premalatha, V.K. Chandrasekar, M. Senthilvelan, R. Amuda, M. Lakshmanan, in International Conference on Complex Networks and Their Applications (Springer, Cham, 2020), pp. 533-543

  18. K. Premalatha, R. Amuda, V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, Complex Syst. 30, 513 (2021)

    Article  Google Scholar 

  19. J.H. Sheeba, V.K. Chandrasekar, M. Lakshmanan, Phys. Rev. E 79, 055203(R) (2009)

    Article  ADS  Google Scholar 

  20. A. Pikovsky, M. Rosenblum, Phys. Rev. Lett. 101, 264103 (2008)

    Article  ADS  Google Scholar 

  21. K. Premalatha, V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, Phys. Rev. E 94, 012311 (2016)

    Article  ADS  Google Scholar 

  22. K. Premalatha, V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, Phys. Rev. E 95, 022208 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. C. Van Vreeswijk, L.F. Abbott, G.B. Ermentrout, J. Comput. Neurosci. 1(4), 313–321 (1994)

    Article  Google Scholar 

  24. L.S. Tsimring, N.F. Rulkov, M.L. Larsen, M. Gabbay, Phys. Rev. Lett. 95, 014101 (2005)

    Article  ADS  Google Scholar 

  25. A.V. Pimenova, D.S. Goldobin, M. Rosenblum, A. Pikovsky, Sci. Rep. 6, 38518 (2016)

    Article  ADS  Google Scholar 

  26. H. Daido, Prog. Theor. Phys. 77, 622 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  27. L. Hong, H. Uecker, M. Hinz, L. Qiao, I.G. Kevrekidis, S. Gunther, T.O. Mentes, A. Locatelli, R. Imbihl, Phys. Rev. E 78, 055203 (2008)

    Article  ADS  Google Scholar 

  28. S. Dixit, M.D. Shrimali, Chaos 30, 033114 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  29. T.V. Martins, R. Toral, M.A. Santos, Eur. Phys. J. B 67, 329 (2009)

    Article  ADS  Google Scholar 

  30. A. Girón, H. Saiz, F.S. Bacelar, R.F.S. Andrade, J. Gómez-Garde\(\tilde{n}\)es, Chaos 26, 065302 (2016)

  31. F.S. Bacelar, J.M. Calabrese, E. Hernandez-Garcia, Ecol. Complex. 17, 140 (2014)

    Article  Google Scholar 

  32. O. Burylko, in Proceedings of the Nonlinear Dynamics of Electronic Systems (2012), pp. 1–4

  33. A. El Ati, E. Panteley, in International Conference on Methods & Models in Automation & Robotics (2013), pp. 22–27

  34. A. El Ati, E. Panteley, in Proceedings of IEEE Conference on Systems Man and Cybernetcis (2013), pp. 1253–1258

  35. H.R. Wilson, J.D. Cowan, Biophys. J. 12(1), 1–24 (1972)

    Article  ADS  Google Scholar 

  36. N. Dehghani, A. Peyrache, B. Telenczuk, M.L. Van Quyen, E. Halgren, S.S. Cash, N.G. Hatsopoulos, A. Destexhe, Sci. Rep. 6, 23176 (2016)

    Article  ADS  Google Scholar 

  37. A. Mishra, C.R. Hens, M. Bose, P.K. Roy, S.K. Dana, Phys. Rev. E 92, 062920 (2015)

    Article  ADS  Google Scholar 

  38. Y. Maistrenko, B. Penkovsky, M. Rosenblum, Phys. Rev. E 89, 060901 (2014)

    Article  ADS  Google Scholar 

  39. C.R. Hens, Olasunkanmi I. Olusola, P. Pal, S.K. Dana, Phys. Rev. E 88, 034902 (2013)

    Article  ADS  Google Scholar 

  40. A. Yeldesbay, A. Pikovsky, M. Rosenblum, Phys. Rev. Lett. 112, 144103 (2014)

    Article  ADS  Google Scholar 

  41. S. Majhi, T. Kapitaniak, D. Ghosh, Chaos Interdiscip. J. Nonlinear Sci. 29(1), 013108 (2019)

    Article  Google Scholar 

  42. G. Sethia, A. Sen, Phys. Rev. Lett. 112, 144101 (2014)

    Article  ADS  Google Scholar 

  43. C.R. Hens, A. Mishra, P.K. Roy, A. Sen, S.K. Dana, Pramana J. Phys. 84, 229 (2015)

    Article  ADS  Google Scholar 

  44. K. Sathiyadevi, V.K. Chandrasekar, D.V. Senthilkumar, M. Lakshmanan, Phys. Rev. E 97, 032207 (2018)

    Article  ADS  Google Scholar 

  45. E. Montbrió, B. Blasius, Chaos 13, 291 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  46. E. Montbrió, D. Pazó, Phys. Rev. Lett. 106, 254101 (2011)

    Article  ADS  Google Scholar 

  47. E. Montbrió, D. Pazó, Phys. Rev. E 184, 046206 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of K. P has been supported by the UGC, Government of India through a Dr D S Kothari Post Doctoral Fellowship under Grant No. F.4-2/2006 (BSR) /PH/20-21/0197. The work of V.K.C. forms part of the research projects sponsored by the DST-CRG Project under Grant No. CRG/2020/004353. V.K.C. also wishes to thank DST, New Delhi for computational facilities under the DST-FIST Program (Grant No. SR/FST/PS-1/2020/135) to the department of Physics. ML is supported by DST-SERB through a National Science Chair (Grant No. NSC/2020/000029).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to K. Premalatha.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Premalatha, K., Chandrasekar, V.K., Senthilkumar, L. et al. Shear-induced symmetry-breaking dynamical states. Eur. Phys. J. Plus 138, 755 (2023). https://doi.org/10.1140/epjp/s13360-023-04396-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04396-1

Navigation