Skip to main content
Log in

TMs-doped SrRuO\(_{3}\) perovskites: high Curie temperature ferromagnetic half-metals

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Four dopants (Mo, Nb, Pd, and Ag) are used to substitute Ru atoms in SrRuO\(_{3}\) at two concentrations (6% and 12%). As all these dopants have a van der Waals radius very close to that of Ru, introducing a very small volume change. We have used density functional theory (DFT), with and without the Hubbard correction (U) to determine changes into the electronic and magnetic properties of SrRuO\(_{3}\) upon doping. We found that the U correction results are closer to the available experimental values, as compared to results without the U. Half-metallic ferromagnetic behavior with 100% polarization was observed for all dopants, except for Ag(12%) resulting in a metallic compound. The impact of SOC on our materials containing heavy elements is also investigated using GGA+U+SOC method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript.

References

  1. R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024 (1983)

    Article  ADS  Google Scholar 

  2. J.M.D. Coey, Dilute magnetic oxides. Curr. Opin. Solid State Mater. Sci. 10, 83e92 (2006)

    Article  Google Scholar 

  3. L.B. Drissi, A. Benyoussef, E.H. Saidi, M. Bousmina, Monte Carlo simulation of magnetic phase transitions in Mn doped ZnO. J. Magn. Magn Mater. 323, 3001e3006 (2011)

    Article  Google Scholar 

  4. X. Li, J. Yang, First-principles design of spintronics materials. Natl. Sci. Rev. 3(3), 365–381 (2016)

    Article  Google Scholar 

  5. I.N. Apostolova, A.T. Apostolov, S. Golrokh Bahoosh, J.M. Wesselinowa, Origin of ferromagnetism in transition metal doped BaTiO3. J. Appl. Phys. 113.20, 203904 (2013)

    Article  Google Scholar 

  6. P. Suresh, S. Srinath, Study of structure and magnetic properties of rare earth doped BiFeO3. Phys. B 448, 281–284 (2014)

    Article  ADS  Google Scholar 

  7. R.H. Liu, M. Li, P. Sun, S.Q. Wang, X. Jin, X.K. Sun, J.W. Liu, Room temperature ferromagnetism of nonmagnetic element Ca-doped LiNbO3 films. Optoelectron. Lett. 10(2), 115–118 (2014)

    Article  ADS  Google Scholar 

  8. I. Khan, J. Hong, Manipulation of magnetic state in phosphorene layer by non-magnetic impurity doping. New J. Phys. 17(2), 023056 (2015)

    Article  ADS  Google Scholar 

  9. C. Bernhard, J.L. Tallon, C. Niedermayer, T. Blasius, A. Golnik, E. Brucher, E.J. Ansaldo, Coexistence of ferromagnetism and superconductivity in the hybrid ruthenate-cuprate compound RuSr2GdCu2O8 studied by muon spin rotation and dc magnetization. Phys. Rev. B 59(21), 14099 (1999)

    Article  ADS  Google Scholar 

  10. H-R. Wenk, A. Bulakh, Minerals: their constitution and origin. New York, NY: Cambridge University Press. ISBN 978-0-521-52958-7 (2004)

  11. B.J. Kennedy, C.J. Howard, K.S. Knight, Z. Zhang, Q. Zhou, Structures and phase transitions in the ordered double perovskites Ba2BiIIIBiVO6 and Ba2BiIIISbVO6. Acta Crystallogr. B 62(4), 537–546 (2006)

    Article  Google Scholar 

  12. D. Fruchart, E.F. Bertaut, Magnetic studies of the metallic perovskite-type compounds of manganese. J. Phys. Soc. Jpn. 44(3), 781–791 (1978)

    Article  ADS  Google Scholar 

  13. M.S. Jamal, M.S. Bashar, A.M. Hasan, Z.A. Almutairi, H.F. Alharbi, N.H. Alharthi, M. Akhtaruzzaman, Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: A review. Renew. Sustain. Energy Rev. 98, 469–488 (2018)

    Article  Google Scholar 

  14. A. Mishra, R. Prasad, Preparation and application of perovskite catalysts for diesel soot emissions control: an overview. Catal. Rev. 56(1), 57–81 (2014)

    Article  Google Scholar 

  15. A.V. Flores, A.E. Krueger, A.J. Stiner, H.M. Albert, T. Mansur, V. Willis, A.M. Fry-Petit, Comparison of the crystal chemistry of tellurium (VI), molybdenum (VI), and tungsten (VI) in double perovskite oxides and related materials. Prog. Solid State Chem. 56, 100251 (2019)

    Article  Google Scholar 

  16. Y. Yamazaki, R. Hernandez-Sanchez, S.M. Haile, High total proton conductivity in large-grained yttrium-doped barium zirconate. Chem. Mater. 21(13), 2755–2762 (2009)

    Article  Google Scholar 

  17. M. Muralidharan, V. Anbarasu, A. Elaya Perumal, K. Sivakumar, Room temperature ferromagnetism in Cr doped SrSnO3 perovskite system. J. Mater. Sci. Mater. Electron. 28, 4125–4137 (2017)

    Article  Google Scholar 

  18. W. Akbar, T. Liaqat, I. Elahi, M. Zulfiqar, S. Nazir, Modulated electronic and magnetic properties of 3d TM-doped SrTiO3: DFT+ U study. J. Magn. Magn. Mater. 500, 166325 (2020)

    Article  Google Scholar 

  19. E.L. Colla, I.M. Reaney, N. Setter, Effect of structural changes in complex perovskites on the temperature coefficient of the relative permittivity. J. Appl. Phys. 74(5), 3414–3425 (1993)

    Article  ADS  Google Scholar 

  20. J.M. Longo, P.M. Raccah, J.B. Goodenough, Magnetic properties of SrRuO3 and CaRuO3. J. Appl. Phys. 39(2), 1327–1328 (1968)

    Article  ADS  Google Scholar 

  21. G. Koster, L. Klein, W. Siemons, G. Rijnders, J.S. Dodge, C.B. Eom, M.R. Beasley, Structure, physical properties, and applications of SrRuO3 thin films. Rev. Mod. Phys. 84(1), 253 (2012)

    Article  ADS  Google Scholar 

  22. M. Zheng, H. Ni, Y. Qi, W. Huang, J. Zeng, J. Gao, Ferroelastic strain control of multiple nonvolatile resistance tuning in SrRuO3/PMN-PT (111) multiferroic heterostructures. Appl. Phys. Lett. 110, 182403 (2017)

    Article  ADS  Google Scholar 

  23. S.C. Gausepohl, M. Lee, L. Antognazza, K. Char, Magnetoresistance probe of spatial current variations in high Tc YBa2Cu3O7RuO3Ba2Cu3O7 Josephson junctions. Appl. Phys. Lett. 67(9), 1313–1315 (1995)

    Article  ADS  Google Scholar 

  24. X. Liu, Y. Wang, J.D. Burton, E.Y. Tsymbal, Polarization-controlled Ohmic to Schottky transition at a metal/ferroelectric interface. Phys. Rev. B 88(16), 165139 (2013)

    Article  ADS  Google Scholar 

  25. J.Y. Jo, D.J. Kim, Y.S. Kim, S.B. Choe, T.K. Song, G.J. Yoon, T.W. Noh, Polarization switching dynamics governed by the thermodynamic nucleation process in ultrathin ferroelectric films. Phys. Rev. Lett. 97(24), 247602 (2006)

    Article  ADS  Google Scholar 

  26. K.S. Takahashi, A. Sawa, Y. Ishii, H. Akoh, M. Kawasaki, Y. Tokura, Inverse tunnel magnetoresistance in all-perovskite junctions of La 0.7Sr0.3MnO3/SrTiO3/SrRuO3. Phys. Rev. B 67.9, 094413 (2003)

    Article  Google Scholar 

  27. C. Zhou, L. Wu, C. Zhang, J. Yao, C. Jiang, Electric field tuning resistance switching behavior of SrRuO3/Pb (Mg1/3Nb2/3) O3bTiO3 heterostructures at various temperatures. J. Phys. D Appl. Phys. 49(42), 425003 (2016)

    Article  ADS  Google Scholar 

  28. S. Kolesnik, B. Dabrowski, O. Chmaissem, Structural and physical properties of SrMn1-xRuxO3 perovskites. Phys. Rev. B 78(21), 214425 (2008)

    Article  ADS  Google Scholar 

  29. A.J. Williams, A. Gillies, J.P. Attfield, G. Heymann, H. Huppertz, M.J. Martinez-Lope, J.A. Alonso, Charge transfer and antiferromagnetic insulator phase in SrRu1-xCrxO3 perovskites: solid solutions between two itinerant electron oxides. Phys. Rev. B 73(10), 104409 (2006)

    Article  ADS  Google Scholar 

  30. R. Nithya, V.S. Sastry, P. Paul, T.C. Han, J.G. Lin, F.C. Chou, Effect of hole doping and antiferromagnetic coupling on the itinerant ferromagnetism of SrRuO3 through Cu substitution at Ru site. Solid State Commun. 149, 1674–1678 (2009)

    Article  ADS  Google Scholar 

  31. R.V.K. Mangalam, A. Sundaresan, Itinerant ferromagnetism to insulating spin glass in SrRu1-xCuxO3 \((0\le x\le 0.3)\). Mater. Res. Bull. 443, 576–580 (2009)

    Article  Google Scholar 

  32. H. Seki, R. Yamada, T. Saito, B.J. Kennedy, Y. Shimakawa, High-concentration Na doping of SrRuO3 and CaRuO3. Inorg. Chem. 53(9), 4579–4584 (2014)

    Article  Google Scholar 

  33. I. Kawasaki, M. Yokoyama, S. Nakano, K. Fujimura, N. Netsu, H. Kawanaka, K. Tenya, Ferromagnetic cluster-glass state in itinerant electron system Sr1-xLaxRuO3. J. Phys. Soc. Jpn. 83(6), 064712 (2014)

    Article  ADS  Google Scholar 

  34. S. Xu, Y. Gu, X. Wu, Ferromagnetism and antiferromagnetism coexistence in Sr1-xLaxRuO3 induced by La-doping. Solid State Commun. 270, 119–123 (2018)

    Article  ADS  Google Scholar 

  35. N. Kim, R. Kim, J. Yu, Half-metallic ferromagnetism and metal-insulator transition in Sn-doped SrRuO3 perovskite oxides. J. Magn. Magn. Mater. 460.54, 60 (2018)

    Google Scholar 

  36. P. Jiao, Y. Liu, X. Wang, J. Chen, First principles investigation of Na doping effects on the structural, magnetic, and electronic properties in SrRuO3. Comput. Mater. Sci. 69, 284–288 (2013)

    Article  Google Scholar 

  37. Q. Xie, C. Qi, G. Bai, L. Chen, X. Yang, F. Duan, G. Cheng, The structural, magnetic and electrical properties of cobalt-doped SrRuO3. J. Alloy. Compd. 746, 477–481 (2018)

    Article  Google Scholar 

  38. D. Kasinathan, D.J. Singh, Electronic structure of Cr-doped SrRuO3: supercell calculations. Phys. Rev. B 74, 195106 (2006)

    Article  ADS  Google Scholar 

  39. B. Adolph, J. Furthmaller, F. Bechstedt, Optical properties of semiconductors using projector-augmented waves. Phys. Rev. B 63(12), 125108 (2001)

    Article  ADS  Google Scholar 

  40. P.B. BlAchl, Projector augmented-wave method. Phys. Rev. B 50.24, 17953 (1994)

    Article  Google Scholar 

  41. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  42. A. Rohrbach, J. Hafner, G. Kresse, Electronic correlation effects in transition-metal sulfides. J. Phys.: Condens. Matter 15(6), 979 (2003)

    ADS  Google Scholar 

  43. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+ U study. Phys. Rev. B 57(3), 1505 (1998)

    Article  ADS  Google Scholar 

  44. A.I. Liechtenstein, V.I. Anisimov, J. Zaanen, Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52(8), R5467 (1995)

    Article  ADS  Google Scholar 

  45. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electronenergy-loss spectra and the structural stability of nickel oxide: an LSDA+ U study. Phys. Rev. B 57(3), 1505 (1998)

    Article  ADS  Google Scholar 

  46. A.I. Liechtenstein, V.I. Anisimov, J. Zaanen, Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52(8), R5467 (1995)

    Article  ADS  Google Scholar 

  47. L. Wang, L. Hua, L.F. Chen, First-principles investigation of Cr doping effects on the structural, magnetic and electronic properties in SrRuO3. Solid State Commun. 150, 1069–1073 (2010)

    Article  ADS  Google Scholar 

  48. V. Durairaj, S. Chikara, X.N. Lin, A. Douglass, G. Cao, P. Schlottmann, R.P. Guertin, Highly anisotropic magnetism in Cr-doped perovskite ruthenates. Phys. Rev. B 73(21), 214414 (2006)

    Article  ADS  Google Scholar 

  49. S.M. Rasul, D.R. Saber, S.B. Aziz, Role of Titanium replacement with Pd atom on band gap reduction in the anatase titanium dioxide: first-principles calculation approach. Results Phys. 38, 105688 (2022)

    Article  Google Scholar 

  50. J. Zhang, M. Deng, F. Ren, Y. Wu, Y. Wang, Effects of Mo/W codoping on the visible-light photocatalytic activity of monoclinic BiVO 4 within the GGA+ U framework. RSC Adv. 6(15), 12290–12297 (2016)

    Article  ADS  Google Scholar 

  51. H.H. Nahm, C.H. Park, First-principles study of microscopic properties of the Nb antisite in LiNbO 3: Comparison to phenomenological polaron theory. Phys. Rev. B 78(18), 184108 (2008)

    Article  ADS  Google Scholar 

  52. T. Jing, Y. Dai, X. Ma, W. Wei, B. Huang, Electronic structure and photocatalytic water-splitting properties of Ag2ZnSn(S1-xSex)4. J. Phys. Chem. C 119(50), 27900–27908 (2015)

    Article  Google Scholar 

  53. W. Sun, S.T. Dacek, S.P. Ong, G. Hautier, A. Jain, W.D. Richards, G.W. Ceder, The thermodynamic scale of inorganic crystalline metastability. Sci. Adv. 2.11, e1600225 (2016)

    Article  ADS  Google Scholar 

  54. S. Faiza-Rubab, S. Naseem, S.M. Alay-e-Abbas, M. Zulfiqar, Y. Zhao, S. Nazir, Structural stability and evolution of half-metallicity in Ba 2 CaMoO 6: interplay of hole-and electron-doping. Phys. Chem. Chem. Phys. 23(35), 19472–19481 (2021)

    Article  Google Scholar 

  55. S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. RÃ \(\frac{1}{4}\) hl, C. Wolverton, The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies, npj Comput. Mater., 1.1(2015), 1-15

  56. D.P. Rai, A. Shankar, R. Khenata, M.P. Ghimire, R.K. Thapa, Ferromagnetism in d0 binary compounds MC (M= Be, Mg, Ca, Sr, Ba and Ra): a modified becke Johnson potential study. J. Adv. Phys. 5(4), 337–343 (2016)

    Article  Google Scholar 

  57. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44(6), 1272–1276 (2011)

    Article  Google Scholar 

  58. A.T. Zayak, X. Huang, J.B. Neaton, K.M. Rabe, Structural, electronic, and magnetic properties of SrRuO3 under epitaxial strain. Phys. Rev. B 74(9), 094104 (2006)

    Article  ADS  Google Scholar 

  59. N. Miao, N.C. Bristowe, B. Xu, M.J. Verstraete, P. Ghosez, First-principles study of the lattice dynamical properties of strontium ruthenate. J. Phys.: Condens. Matter 26(3), 035401 (2013)

    Google Scholar 

  60. J.M. Rondinelli, N.M. Caffrey, S. Sanvito, N.A. Spaldin, Electronic properties of bulk and thin film SrRuO3: Search for the metal-insulator transition. Phys. Rev. B 78(15), 155107 (2008)

    Article  ADS  Google Scholar 

  61. H.T. Jeng, S.H. Lin, C.S. Hsue, Orbital ordering and Jahn-Teller distortion in perovskite ruthenate SrRuO3. Phys. Rev. Lett. 97(6), 067002 (2006)

    Article  ADS  Google Scholar 

  62. L.B. Drissi, E.H. Saidi, M. Bousmina, O. Fassi-Fehri, DFT investigations of the hydrogenation effect on silicene/graphene hybrids. J. Phys.: Condens. Matter 24(48), 485502 (2012)

    Google Scholar 

  63. D.J. Singh, Electronic and magnetic properties of the 4d itinerant ferromagnet SrRuO3. J. Appl. Phys. 79(8), 4818–4820 (1996)

    Article  ADS  Google Scholar 

  64. L.B. Drissi, F.Z. Ramadan, E.H. Saidi, M. Bousmina, O. Fassi-Fehri, Fluorination effects on electronic and magnetic properties of silicene/graphene hybrids. J. Phys. Soc. Jpn. 82(10), 104711 (2013)

    Article  ADS  Google Scholar 

  65. G.Y. Mao, X.X. Liu, Q. Gao, L. Li, H.H. Xie, G. Lei, J.B. Deng, Effect of As and Nb doping on the magnetic properties for quaternary Heusler alloy FeCoZrGe. J. Magn. Magn. Mater. 398, 1–6 (2016)

    Article  ADS  Google Scholar 

  66. I. Cherair, N. Iles, L. Rabahi, A. Kellou, Effects of Fe substitution by Nb on physical properties of BaFeO3: A DFT+ U study. Comput. Mater. Sci. 126, 491–502 (2017)

    Article  Google Scholar 

  67. Z.Y. Feng, Y. Yang, Q.N. Ren, Y.L. Jing, Z.R. Zhao, The electronic and magnetic properties of the Mo doped ZnTe alloys with different configurations. Mater. Today Commun. 24, 101258 (2020)

    Article  Google Scholar 

  68. R. Rami, L.B. Drissi, N. Rkhioui, M.D. El Bouzaidi, R. Ahl Laamara, Electronic and magnetic properties of CeO2 doped with double impurities (Pd, C). Mater. Res. Express 6.9, 096101 (2019)

    Article  Google Scholar 

  69. J.P. Tang, L.L. Wang, W.Z. Xiao, X.F. Li, First principles study on magnetic properties in ZnS doped with palladium, The. Eur. Phys. J. B 86, 1–5 (2013)

    Article  ADS  Google Scholar 

  70. S.R. Bhandari, D.K. Yadav, B.P. Belbase, M. Zeeshan, B. Sadhukhan, D.P. Rai, M.P. Ghimire, Electronic, magnetic, optical and thermoelectric properties of Ca2Cr1-xNixOsO6 double perovskites. RSC Adv. 10.27, 16179–1618 (2020)

    Article  Google Scholar 

  71. A. Raturi, P. Mittal, S. Choudhary, Tuning the electronic and optical properties of SrTiO3 for optoelectronic and photocatalytic applications by plasmonic-metal doping : a DFT-computation. Opt. Quant. Electron. 54(10), 634 (2022)

    Article  Google Scholar 

  72. M. Wu, X. Lou, T. Li, J. Li, S. Wang, W. Li, G. Gou, Ni-doped SrBi2Nb2O9 perovskite oxides with reduced band gap and stable ferroelectricity for photovoltaic applications. J. Alloy. Compd. 724, 1093–1100 (2017)

    Article  Google Scholar 

  73. N.X. Ca, H.T. Van, P.V. Do, L.D. Thanh, P.M. Tan, N.X. Truong, N.T. Hien, Influence of precursor ratio and dopant concentration on the structure and optical properties of Cu-doped ZnCdSe-alloyed quantum dots. RSC Adv. 10(43), 25618–25628 (2020)

    Article  ADS  Google Scholar 

  74. H.Z. Lin, C.Y. Hu, P.H. Lee, A.Z.Z. Yan, W.F. Wu, Y.F. Chen, Y.K. Wang, Half-metallic property induced by double exchange interaction in the double perovskite \(Bi_{2}BB^{^{\prime }}O_{6}\) (B, \(B^{^{\prime }}=3d\) transitional metal) via first-principles calculations. Materials 12(11), 1844 (2019)

    Article  ADS  Google Scholar 

  75. K. Sato, P.H. Dederichs, H. Katayama-Yoshida, J. Kudrnovski, Exchange interactions in diluted magnetic semiconductors. J. Phys.: Condens. Matter 16(48), S5491 (2004)

    ADS  Google Scholar 

  76. Q. Tan, Q. Wang, Y. Liu, Magnetic properties and spontaneous polarization of La-, Mn-and N-doped tetragonal BiFeO3: a first-principles study. Materials 11(6), 985 (2018)

    Article  ADS  Google Scholar 

  77. E. Gradauskaite, J. Gardner, R.M. Smith, F.D. Morrison, S.L. Lee, R.S. Katiyar, J.F. Scott, Lead palladium titanate: a room-temperature multiferroic. Phys. Rev. B 96(10), 104104 (2017)

    Article  ADS  Google Scholar 

  78. H. Nit Ben Ahmed, R. Rami, L.B. Drissi, K. Htoutou, R. Ahl Laamara, Theoretical study of doping effect on electronic and magnetic properties of BaZrO3. Phys. B Condens. Matter. 643, 414168 (2022)

  79. S.R. Bhandari, D.K. Yadav, B.P. Belbase, M. Zeeshan, B. Sadhukhan, D.P. Rai, R.K. Thapa, G.C. Kaphle, M.P. Ghimire, Electronic, magnetic, optical and thermoelectric properties of Ca2Cr1-xNixOsO6 double perovskites. RSC Adv. 10(27), 16179–16186 (2020)

    Article  ADS  Google Scholar 

  80. Y. Zhang, J. Wang, M.P.K. Sahoo, T. Shimada, T. Kitamura, Mechanical control of magnetism in oxygen deficient perovskite SrTiO3. Phys. Chem. Chem. Phys. 17(40), 27136–27144 (2015)

    Article  Google Scholar 

  81. Y. Li, X.F. Dai, G.D. Liu, Z.Y. Wei, E.K. Liu, X.L. Han, G.H. Wu, Structural, magnetic properties, and electronic structure of hexagonal FeCoSn compound. Chin. Phys. B 27.2, 026101 (2018)

    Article  Google Scholar 

  82. K. Sato, P.H. Dederics, H. Katayama-Yoshida, Curie temperatures of III-V diluted magnetic semiconductors calculated from first principles. Europhys. Lett. 6(3), 403 (2003)

    Article  ADS  Google Scholar 

  83. C.B. Eom, R.J. Cava, R.M. Fleming, J.M. Phillips, R.B. Vandover, J.H. Marshall, W.F. Peck Jr., Single-crystal epitaxial thin films of the isotropic metallic oxides Sr1-xCaxRuO3. Science 2585.089, 1766–1769 (1992)

    Article  Google Scholar 

  84. S. Ravi, F.W. Shashikanth, Magnetic properties of Mo-doped TiO2 nanoparticles: a candidate for dilute magnetic semiconductors. Mater. Lett. 264, 127331 (2020)

    Article  Google Scholar 

  85. X. Lin, W. Yang, F. Pan, The first-principles calculation study on the magnetic properties of Mo doped GaSb. Physica B 596, 412399 (2020)

    Article  Google Scholar 

  86. S. Nazir, Y. Cheng, Stable antiferromagnetism and semiconducting-to-metal transition in ALaCuOsO6 (A = Ba and Sr): strain modulations, phys. Chem. Chem. Phys. 25, 838 (2023)

    Article  Google Scholar 

  87. A. Ghazrani, K. Htoutou, S. Harir, L.B. Drissi, Compensation behavior in (Fe-Ni) core-shell nanostructures: Heisenberg Monte Carlo simulations. J. Stat. Mech: Theory Exp. 2023(3), 033209 (2023)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the “Académie Hassan II des Sciences et Techniques”-Morocco for its financial support. The authors also thank the LPHE-MS, Faculty of Sciences, Mohammed V University in Rabat, Morocco, for the technical support through computer facilities, where all the calculations have been performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Drissi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elkhou, A., Drissi, L.B., Kara, A. et al. TMs-doped SrRuO\(_{3}\) perovskites: high Curie temperature ferromagnetic half-metals. Eur. Phys. J. Plus 138, 764 (2023). https://doi.org/10.1140/epjp/s13360-023-04393-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04393-4

Navigation