Skip to main content
Log in

Enhanced second harmonic generation from a hybrid nanosystem consisting of a semiconductor quantum dot in the presence of two spheroidal plasmonic nanoparticles

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, the nonlinear optical process of second harmonic generation from a hybrid nanosystem (also known as a heterotrimer system) composed of two metallic nanoparticles with an ellipsoidal shape and mediated by a semiconductor quantum dot is theoretically studied when the system is subjected to an applied laser electric field as a probe field to produce the two-photon absorption in the semiconductor quantum dot that is responsible for the second-order nonlinear process. In addition to the probe laser field, a control field is applied to the system for optically monitoring the second harmonic signal. The dynamic of the hybrid system is investigated using the master equation of the density matrix of the quantum dot in the presence of two plasmonic nanoparticles under the rotating wave approximation. We demonstrate the tunability of the second harmonic signal from this system due to the dipole–dipole coupling between the semiconductor quantum dot and the metal nanoparticles, which forms a noncentrosymmetric system and enables the second harmonic process. The generation of second harmonic radiation is a nonlinear optical process sensitive to the system’s geometry. The impact of the probe laser field, the control field, the dielectric constant of the embedding medium, and the separation distance between the quantum dot and plasmonic nanoparticles on the intensity of the second harmonic signal is demonstrated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data used during this study are included in the article.].

References

  1. Z. Lu, K.-D. Zhu, Enhancing Kerr nonlinearity of a strongly coupled exciton-plasmon in hybrid nanocrystal molecules. J. Phys. B: At. Mol. Opt. Phys. 41, 185503 (2008)

    Article  ADS  Google Scholar 

  2. W. Zhang, A.O. Govorov, Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: the case of strong nonlinearity. Phys. Rev. B 84, 081405(R) (2011)

    Article  ADS  Google Scholar 

  3. J.-B. Li, N.-C. Kim, M.-T. Cheng, L. Zhou, Z.-H. Hao, Q.-Q. Wang, Optical bistability and nonlinearity of coherently coupled excitonplasmon systems. Opt. Express 20, 1856–1861 (2012)

    Article  ADS  Google Scholar 

  4. X.N. Liu, D.Z. Yao, H.M. Zhou, F. Chen, G.G. Xiong, Third-order nonlinear optical response in quantum dot-metal nanoparticle hybrid structures. Appl. Phys. B 113, 603–610 (2013)

    Article  ADS  Google Scholar 

  5. J.-B. Li, M.-D. He, L.-Q. Chen, Four-wave parametric amplification in semiconductor quantum dot-metallic nanoparticle hybrid molecules. Opt. Express 22, 24734 (2014)

    Article  ADS  Google Scholar 

  6. E. Paspalakis, S. Evangelou, S.G. Kosionis, A.F. Terzis, Strongly modified four-wave mixing in a coupled semiconductor quantum dot-metal nanoparticle system. J. Appl. Phys. 115, 083106 (2014)

    Article  ADS  Google Scholar 

  7. M.R. Singh, C. Racknor, Nonlinear energy transfer in quantum dot and metallic nanorod nanocomposites. JOSA B 32, 2216 (2015)

    Article  ADS  Google Scholar 

  8. A.F. Terzis, S.G. Kosionis, J. Boviatsis, E. Paspalakis, Nonlinear optical susceptibilities of semiconductor quantum dot-metal nanoparticle hybrids. J. M. Opt. 63, 451–461 (2015)

    Article  ADS  Google Scholar 

  9. S. Evangelou, Modifying the linear and nonlinear optical susceptibilities of coupled quantum dot-metallic nanosphere systems with the Purcell effect. J. Appl. Phys 124, 233103 (2018)

    Article  ADS  Google Scholar 

  10. F. Carreno, M.A. Anton, E. Paspalakis, Nonlinear optical rectification and optical bistability in a coupled asymmetric quantum dot-metal nanoparticle hybrid. J. Appl. Phys 124, 113107 (2018)

    Article  ADS  Google Scholar 

  11. B.S. Nugroho, A.A. Iskandar, V.A. Malyshev, J. Knoester, Plasmon-assisted two-photon Rabi oscillations in a semiconductor quantum dot-metal nanoparticle heterodimer. Phys. Rev. B 99, 075302 (2019)

    Article  ADS  Google Scholar 

  12. P.M. Jais, C. von Bilderling, A.V. Bragas, Plasmon-enhanced second harmonic generation in semiconductor quantum dots close to metal nanoparticles. Pap. Phys. 3, 030002 (2011)

    Article  Google Scholar 

  13. A. Babaze, R. Esteban, J. Aizpurua, A.G. Borisov, Second-harmonic generation from a quantum emitter coupled to a metallic nanoantenna. ACS Photonics 7, 701–713 (2020)

    Article  Google Scholar 

  14. M. Singh, Enhancement of the second-harmonic generation in a quantum dot-metallic nanoparticle hybrid system. Nanotechnology 24, 125701 (2013)

    Article  ADS  Google Scholar 

  15. N. Domenikou, I. Thanopulos, V. Yannopapas, E. Paspalakis, Nonlinear optical rectification in an inversion-symmetry-broken molecule near a metallic nanoparticle. Nanomaterials 12, 1020 (2022)

    Article  Google Scholar 

  16. A. Manjavacas, F.J. García, de Abajo, P. Nordlander, Strongly interacting plasmons and excitons quantum plexcitonics. Nano Lett. 11, 231–2323 (2011)

    Article  Google Scholar 

  17. B.S. Nugroho, A.A. Iskandar, V.A. Malyshev, J. Knoester, Plasmon-assisted two-photon absorption in a semiconductor quantum dot-metallic nanoshell composite. Phys. Rev. B 102, 045405 (2020)

    Article  ADS  Google Scholar 

  18. J. Cox, M. Singh, C. Bilderling, A. Bragas, A nonlinear switching mechanism in quantum dot and metallic nanoparticle hybrid systems. Adv. Optical Mater. 1, 460–467 (2013)

    Article  Google Scholar 

  19. E. Shaviv, U. Banin, Synergistic effects on second harmonic generation of hybrid CdSe-Au nanoparticles. ACS Nano 4, 1538 (2010)

    Article  Google Scholar 

  20. C. Bao, Y. Qi, Y. Niu, S. Gong, Surface plasmon-assisted optical bistability in the quantum dot-metal nanoparticle hybrid system. J. Mod. Opt. 63, 1280–1285 (2016)

    ADS  Google Scholar 

  21. L. Bonacina, P.-F. Brevet, M. Finazzi, M. Celebrano, Harmonic generation at the nanoscale. J. Appl. Phys. 127, 230901 (2020)

    Article  ADS  Google Scholar 

  22. W.-X. Yang, A.-X. Chen, Z. Huang, R.-K. Lee, Ultrafast optical switching in quantum dot-metallic nanoparticle hybrid systems. Opt. Eppress 23, 13032 (2015)

    Article  ADS  Google Scholar 

  23. M. Sukharev, A. Salomon, J. Zyss, Second harmonic generation by strongly coupled exciton-plasmons: the role of polaritonic states in nonlinear dynamics. J. Chem. Phys. 154, 244701 (2021)

    Article  ADS  Google Scholar 

  24. X. Han, K. Wang, P.D. Persaud, X. Xing, W. Liu, H. Long, F. Li, B. Wang, M.R. Singh, P. Lu, Harmonic resonance enhanced second-harmonic generation in the monolayer WS\(_2\)-Ag nanocavity. ACS Photonics 7, 562–568 (2020)

    Article  Google Scholar 

  25. Y. Xie, L. Yang, J. Du, Z. Li, Giant enhancement of second-harmonic generation in hybrid metasurface coupled MoS\(_2\) with fano-resonance effect. Nanoscale Res. Lett. 17:97, 1 (2022)

    Google Scholar 

  26. C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K.D. Dorkenoo, A. Fort, Role of surface plasmon in second harmonic generation from gold nanorods. Appl. Phys. Lett. 90, 181105 (2007)

    Article  ADS  Google Scholar 

  27. K. Li, M.I. Stockman, D.J. Bergman, Enhanced second harmonic generation in a self-similar chain of metal nanospheres. Phys. ReV. B 72, 153401 (2005)

    Article  ADS  Google Scholar 

  28. X. Jiang, K. Guo, G. Liu, T. Yang, Y. Yang, Enhancement of surface plasmon resonances on the nonlinear optical properties in a GaAs quantum dot. Superlattices Microstruct 105, 56–64 (2017)

    Article  ADS  Google Scholar 

  29. M.H. Rahaman, T. Sarkar, B.A. Kemp, Tunable and large plasmonic field enhancement in core-shell heterodimer/trimer. J. Electromagnet Waves Appl. 33, 2423–2433 (2019)

    Article  ADS  Google Scholar 

  30. M. Jacobsohn, U. Banin, Size dependence of second harmonic generation in CdSe nanocrystal quantum dots. J. Phys. Chem. B 104, 1 (2000)

    Article  Google Scholar 

  31. B. Wu, P.-F. Wang, Y.-H. Qiu, S. Liang, Z.-Y. Wu, L. Zhou, Q.-Q. Wang, Enhanced second-harmonic generation of asymmetric Au@CdSe heterorods. Sci. China Mater. 63, 1472–1479 (2020)

    Article  Google Scholar 

  32. R.D. Artuso, G.W. Bryant, Quantum dot-quantum dot interactions mediated by a metal nanoparticle: towards a fully quantum model. Phys. Rev. B 87, 125423 (2013)

    Article  ADS  Google Scholar 

  33. Y. He, K.-D. Zhu, Fano correlation effect of optical response due to plasmon-exciton-plasmon interaction in an artificial hybrid molecule system. J. Opt. Soc. Am. B 30, 868 (2013)

    Article  ADS  Google Scholar 

  34. Y. Chen, Y. Cheng, M. Sun, Nonlinear plexcitons: excitons coupled with plasmons in two-photon absorption. Nanoscale 14, 7269–7279 (2022)

    Article  Google Scholar 

  35. Y. He, K.-D. Zhu, Fano effect and quantum entanglement in hybrid semiconductor quantum dot-metal nanoparticle system. Sensors 17, 1445 (2017)

    Article  ADS  Google Scholar 

  36. D.A. Smirnova, I.V. Shadrivov, A.E. Miroshnichenko, A.I. Smirnov, Y.S. Kivshar, Second-harmonic generation by a graphene nanoparticle. Phys. Rev. B 90, 035412 (2014)

    Article  ADS  Google Scholar 

  37. M.R. Singh, D.G. Schindel, A. Hatef, Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system. Appl. Phys. Lett. 99, 181106 (2011)

    Article  ADS  Google Scholar 

  38. Z. Zeng, C.S. Garoufalis, A.F. Terzis, S. Baskoutas, Linear and nonlinear optical properties of ZnO/ZnS and ZnS/ZnO core shell quantum dots: effects of shell thickness, impurity, and dielectric environment. J. Appl. Phys. 114, 023510 (2013)

    Article  ADS  Google Scholar 

  39. S. An, M. Sargent III., Quantum theory of multiwave mixing. X. Two-photon three-level model. Phys. Rev. A 39, 1841 (1989)

    Article  ADS  Google Scholar 

  40. P. Meystre, M. Sargent, Elememts of Quantum Optics, 4th edn. (Springer-Verlag, Berlin Heidelberg, 2007)

    Book  MATH  Google Scholar 

  41. A.G. de Garcia, P. Meystre, R.R.E. Salomaa, Time-delayed probe spectroscopy in two-photon-pumped systems. Phys. Rev. A: At. Mol. Opt. Phys. 32, 1531–1540 (1985)

    Article  ADS  Google Scholar 

  42. P.A. Apanasevich, G.I. Timofeeva, Two-photon resonant transitions. J. Appl. Spect. 85, 250 (2018)

    Article  ADS  Google Scholar 

  43. R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press, 2008)

    Google Scholar 

  44. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)

    Book  Google Scholar 

  45. M.A. Anton, F. Carreno, S. Melle, O.G. Calderon, E. Cabrera-Granado, M.R. Singh, Optical pumping of a single hole spin in a p-doped quantum dot coupled to a metallic nanoparticle. Phys. Rev. B 87, 195303 (2013)

    Article  ADS  Google Scholar 

  46. C. Bohren, D. Huffmann, Absorption and Scattering of Light by Small Particles (John Wiley, New York, 1983)

    Google Scholar 

  47. L. La Spada, R. Iovine, L. Vegni, Electromagnetic modeling of ellipsoidal nanoparticles for sensing applications. Opt. Eng. 52, 051205 (2013)

    Article  ADS  Google Scholar 

  48. C. Racknor, M.R. Singh, Y. Zhang, D.J.S. Birch, Y. Chen, Energy transfer between a biological labelling dye and gold nanorods. Methods Appl. Fluoresc. 2, 015002 (2014)

    Article  ADS  Google Scholar 

  49. H.S. Borges, L. Sanz, J.M. Villas-Bôas, A.M. Alcalde, Robust states in semiconductor quantum dot molecules. Phys. Rev. B 81, 075322 (2010)

    Article  ADS  Google Scholar 

  50. D.A. Holm, M. Sargent III., Quantum theory of multiwave mixing. V. Two-photon two-level model. Phys. Rev. A 33, 1073 (1986)

    Article  ADS  Google Scholar 

  51. S. Ovadia, M. Sargent III., S.T. Hendow, Effects of dynamic Stark shifts on two-photon side-mode instabilities. Opt. Lett. 10, 505 (1985)

    Article  ADS  Google Scholar 

  52. K. Blum, Density Matrix Theory and Applications, 3rd edn. (Springer-Verlag, Berlin Heidelberg, 2012)

    Book  MATH  Google Scholar 

  53. P. West, S. Ishii, G. Naik, N. Emani, V. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010)

    Article  ADS  Google Scholar 

  54. M.R. Singh, K. Black, Anomalous dipole-dipole interaction in an ensemble of quantum emitters and metallic nanoparticle hybrids. J. Phys. Chem. C 122, 26584 (2018)

    Article  Google Scholar 

  55. M.R. Singh, N. Fang, Power transfer due to Kerr nonlinearity in plasmonic nanohybrids. Solid State Commun. 336, 114397 (2021)

    Article  Google Scholar 

  56. E. Prodan, A. Lee, P. Nordlander, The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells. Chem. Phys. Lett. 360, 325–332 (2002)

    Article  ADS  Google Scholar 

  57. J. Zhu, Theoretical study of the tunable second-harmonic generation (SHG) enhancement factor of gold nanotubes. Nanotechnology 18, 225702 (2007)

    Article  ADS  Google Scholar 

  58. J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, El. Benichou, P.-F. Brevet, Effect of the dielectric core and embedding medium on the second harmonic generation from plasmonic nanoshells: tunability and sensing. J. Phys. Chem. C 117, 1172 (2013)

    Article  Google Scholar 

  59. J. Butet, S. Dutta-Gupta, O.J.F. Martin, Surface second-harmonic generation from coupled spherical plasmonic nanoparticles: eigenmode analysis and symmetry properties. Phys. Rev. B 89, 245449 (2014)

    Article  ADS  Google Scholar 

  60. K. Guo, Z. Guo, Enhanced second-harmonic generation from fanolike resonance in an asymmetric homodimer of gold elliptical nanodisks. ACS Omega 4, 1757 (2019)

    Article  Google Scholar 

  61. N. Daneshfar, Z. Noormohamadi, Optical surface second harmonic generation from plasmonic graphene-coated nanoshells: influence of shape, size, dielectric core and embedding medium. Appl. Phys. A 126, 55 (2020)

    Article  ADS  Google Scholar 

Download references

Funding

No funding was received

Author information

Authors and Affiliations

Authors

Contributions

All authors have read and agreed to publish this manuscript.

Corresponding author

Correspondence to Nader Daneshfar.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashidi, M., Daneshfar, N. Enhanced second harmonic generation from a hybrid nanosystem consisting of a semiconductor quantum dot in the presence of two spheroidal plasmonic nanoparticles. Eur. Phys. J. Plus 138, 765 (2023). https://doi.org/10.1140/epjp/s13360-023-04392-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04392-5

Navigation