Skip to main content
Log in

Coherent control of double-ring perfect optical vortex via hyper-Raman scattering in a Landau-quantized graphene

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A scheme for the control of double-ring perfect optical vortex (DR-POV) in a Landau-quantized graphene is proposed. The orbital angular momentum is transferred from a unique DR-POV mode to the generated Raman field via hyper-Raman scattering process. Using experimentally achievable parameters, we identify the condition under which the probe detuning allows us to improve the output intensity and quality of the vortex Raman field and engineer the helical phase wavefront. Furthermore, we find that the intensity and phase patterns of the vortex Raman field can be effectively controlled via adjusting the intensity of the control field. Subsequently, we perform the superposition mode created by the coaxial interference between the generated vortex Raman field and a same frequency DR-POV beam and show interesting optical properties. Our scheme may have potential applications in high-capacity optical communication and optical information process based on POV in 2D material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. Y. Arita, M. Chen, E. Wright, K. Dholakia, Dynamics of a levitated microparticle in vacuum trapped by a perfect vortex beam: three-dimensional motion around a complex optical potential. J. Opt. Soc. Am. B 34(6), 14–19 (2017)

    Article  Google Scholar 

  2. Y. Liang, M. Lei, S. Yan, M. Li, Y. Cai, Z. Wang, X. Yu, B. Yao, Rotating of low-refractive-index microparticles with a quasi-perfect optical vortex. Appl. Opt. 57(1), 79–84 (2018)

    Article  ADS  Google Scholar 

  3. S. Li, J. Wang, Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing. IEEE Photonics J. 5(5), 7101007 (2013)

    Article  ADS  Google Scholar 

  4. J. Leach, B. Jack, J. Romero, A. Jha, A. Yao, S. Franke-Arnold, D. Ireland, R. Boyd, S. Barnett, M. Padgett, Quantum correlations in optical angle-orbital angular momentum variables. Science 329, 662–665 (2010)

    Article  ADS  Google Scholar 

  5. S. Liu, Y. Lou, J. Jing, Orbital angular momentum multiplexed deterministic all-optical quantum teleportation. Nat. Commun. 11, 3875 (2020)

    Article  ADS  Google Scholar 

  6. N. Radwell, T. Clark, B. Piccirillo, S. Barnett, S. Franke-Arnold, Spatially dependent electromagnetically induced transparency. Phys. Rev. Lett. 114(12), 123603 (2015)

    Article  ADS  Google Scholar 

  7. J. Qiu, Z. Wang, B. Yu, Generation of new structured beams via spatially dependent transparency. Quantum Inf. Process. 18, 1–10 (2019)

    Article  MATH  Google Scholar 

  8. X. Dai, X. Hao, R.-B. Jin, C. Peng, C. Ding, Controllable probe absorption spectrum via vortex beams excitation in a cascaded atomic system. J. Appl. Phys. 129(22), 224303 (2021)

    Article  ADS  Google Scholar 

  9. H.R. Hamedi, V. Kudriašov, N. Jia, J. Qian, G. Juzeliūnas, Ferris wheel patterning of Rydberg atoms using electromagnetically induced transparency with optical vortex fields. Opt. Lett. 46(17), 4204–4207 (2021)

    Article  ADS  Google Scholar 

  10. S.M. Mousavi, Z.A. Sabegh, R. Kheradmand, M. Mahmoudi, Spatially dependent optical bistability. J. Opt. Soc. Am. B 39(6), 1534–1542 (2022)

    Article  ADS  Google Scholar 

  11. D. Zhang, H. Xia, K. Wang, Y. Li, Z. Sun, M. Wang, Asymmetric two-dimensional electromagnetically induced grating controlled by a vortex field. J. Phys. B: At., Mol. Opt. Phys. 55(17), 175402 (2022)

    Article  ADS  Google Scholar 

  12. S.H. Asadpour, H.R. Hamedi, T. Kirova, E. Paspalakis, Two-dimensional electromagnetically induced phase grating via composite vortex light. Phys. Rev. A 105(4), 043709 (2022)

    Article  ADS  Google Scholar 

  13. H.R. Hamedi, J. Ruseckas, E. Paspalakis, G. Juzeliūnas, Transfer of optical vortices in coherently prepared media. Phys. Rev. A 99(3), 033812 (2019)

    Article  ADS  Google Scholar 

  14. M. Mahdavi, Z.A. Sabegh, M. Mohammadi, M. Mahmoudi, H.R. Hamedi, Manipulation and exchange of light with orbital angular momentum in quantum-dot molecules. Phys. Rev. A 101(6), 063811 (2020)

    Article  ADS  Google Scholar 

  15. S.H. Asadpour, M. Abbas, H.R. Hamedi, Exchange of orbital angular momentum of light via noise-induced coherence. Phys. Rev. A 105(3), 033709 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  16. H.R. Hamedi, J. Ruseckas, G. Juzeliūnas, Exchange of optical vortices using an electromagnetically-induced-transparency-based four-wave-mixing setup. Phys. Rev. A 98(1), 013840 (2018)

    Article  ADS  Google Scholar 

  17. Y. Zhang, Z. Wang, J. Qiu, Y. Hong, B. Yu, Spatially dependent four-wave mixing in semiconductor quantum wells. Appl. Phys. Lett. 115(17), 171905 (2019)

    Article  Google Scholar 

  18. Y. Hong, Z. Wang, D. Ding, B. Yu, Ultraslow vortex four-wave mixing via multiphoton quantum interference. Opt. Express 27(21), 29863–29874 (2019)

    Article  ADS  Google Scholar 

  19. J. Qiu, Z. Wang, D. Ding, W. Li, B. Yu, Highly efficient vortex four-wave mixing in asymmetric semiconductor quantum wells. Opt. Express 28(3), 2975–2986 (2020)

    Article  ADS  Google Scholar 

  20. J. Qiu, Z. Wang, D. Ding, Z. Huang, B. Yu, Control of space-dependent four-wave mixing in a four-level atomic system. Phys. Rev. A 102(3), 033516 (2020)

    Article  ADS  Google Scholar 

  21. A. Rahmatullah, Q. Ziauddin, Spatially structured transparency and transfer of optical vortices via four-wave mixing in a quantum-dot nanostructure. Phys. Rev. A 101(2), 023821 (2020)

    Article  ADS  Google Scholar 

  22. M. Mahdavi, Z. Sabegh, H. Hamedi, M. Mahmoudi, Orbital angular momentum transfer in molecular magnets. Phys. Rev. B 104(9), 094432 (2021)

    Article  ADS  Google Scholar 

  23. C. Peng, S. Zheng, H. Wang, C. Ding, R.-B. Jin, Manipulation of double-four-wave mixing in an atomic system under vortex-beam illumination. Eur. Phys. J. D 77(6), 112 (2023)

    Article  ADS  Google Scholar 

  24. H. Yan, E. Zhang, B. Zhao, K. Duan, Free-space propagation of guided optical vortices excited in an annular core fiber. Opt. Express 20(16), 17904–17915 (2012)

    Article  ADS  Google Scholar 

  25. A. Ostrovsky, C. Rickenstorff-Parrao, V. Arrizón, Generation of the “perfect’’ optical vortex using a liquid-crystal spatial light modulator. Opt. Lett. 38(4), 534–536 (2013)

    Article  ADS  Google Scholar 

  26. V. Kotlyar, A. Kovalev, A. Porfirev, Optimal phase element for generating a perfect optical vortex. J. Opt. Soc. Am. A 33(12), 2376–2384 (2016)

    Article  ADS  Google Scholar 

  27. P. Vaity, L. Rusch, Perfect vortex beam: Fourier transformation of a Bessel beam. Opt. Lett. 40(4), 597–600 (2015)

    Article  ADS  Google Scholar 

  28. Z. Xin, C. Zhang, X. Yuan, Concentric perfect optical vortex beam generated by a digital micromirrors device. IEEE Photonics J. 9(2), 1–7 (2017)

    Article  Google Scholar 

  29. Y. Liang, S. Yan, M. He, M. Li, Y. Cai, Z. Wang, M. Lei, B. Yao, Generation of a double-ring perfect optical vortex by the Fourier transform of azimuthally polarized Bessel beams. Opt. Lett. 44(6), 1504–1507 (2019)

    Article  ADS  Google Scholar 

  30. K. Yang, H. Luo, P. Li, F. Wen, Y. Gu, Z. Wu, Controlling spacing of double-ring perfect optical vortex using the Fourier transform of Bessel beam with Axicon phase. Opt. Laser Technol. 158, 108881 (2023)

    Article  Google Scholar 

  31. Y. Chen, J. Wang, C. Wang, S. Zhang, M. Cao, S. Franke-Arnold, H. Gao, F. Li, Phase gradient protection of stored spatially multimode perfect optical vortex beams in a diffused rubidium vapor. Opt. Express 29(20), 31582–31593 (2021)

    Article  ADS  Google Scholar 

  32. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320(5881), 1308 (2008)

    Article  ADS  Google Scholar 

  33. S. Liu, W.-X. Yang, Z. Zhu, S. Liu, R.-K. Lee, Effective hyper-Raman scattering via inhibiting electromagnetically induced transparency in monolayer graphene under an external magnetic field. Opt. Lett. 41(12), 2891–2894 (2016)

    Article  ADS  Google Scholar 

  34. X. Yao, A. Belyanin, Giant optical nonlinearity of graphene in a strong magnetic field. Phys. Rev. Lett. 108(25), 255503 (2012)

    Article  ADS  Google Scholar 

  35. M.L. Nesterov, J. Bravo-Abad, A.Y. Nikitin, F.J. García-Vidal, L. Martin-Moreno, Graphene supports the propagation of subwavelength optical solitons. Laser Photonics Rev. 7(2), 7–11 (2013)

    Article  ADS  Google Scholar 

  36. X. Yao, A. Belyanin, Nonlinear optics of graphene in a strong magnetic field. J. Phys.: Condens. Matter 25(5), 054203 (2013)

    ADS  Google Scholar 

  37. M. Tokman, X. Yao, A. Belyanin, Generation of entangled photons in graphene in a strong magnetic field. Phys. Rev. Lett. 110(7), 077404 (2013)

    Article  ADS  Google Scholar 

  38. F. Wen, S. Zhang, S. Hui, H. Ma, S. Wang, H. Ye, W. Wang, T. Zhu, Y. Zhang, H. Wang, Terahertz tunable optically induced lattice in the magnetized monolayer graphene. Opt. Express 30(2), 2852–2862 (2022)

    Article  ADS  Google Scholar 

  39. C. Ding, J. Li, X. Dai, R.-B. Jin, X. Hao, Azimuthal and radial modulation of double-four-wave mixing in a coherently driven graphene ensemble. Opt. Express 29(22), 36840–36856 (2021)

    Article  ADS  Google Scholar 

  40. C. Kong, Z. Wang, B. Yu, Helical phase modulation via four-wave mixing in a graphene system. Appl. Phys. A: Mater. Sci. Process. 128(9), 744 (2022)

    Article  ADS  Google Scholar 

  41. M. Abbas, P. Zhang. Rahmatullah, Transfer of optical vortices at the landau level of graphene. Eur. Phys. J. Plus 138(1), 59 (2023)

    Article  Google Scholar 

  42. Z. Jiang, E.A. Henriksen, L.C. Tung, Y.J. Wang, M.E. Schwartz, M.Y. Han, P. Kim, H.L. Stormer, Infrared spectroscopy of landau levels of graphene. Phys. Rev. Lett. 98(19), 197403 (2007)

    Article  ADS  Google Scholar 

  43. D.S.L. Abergel, V.I. Fal’ko, Optical and magneto-optical far-infrared properties of bilayer graphene. Phys. Rev. B 75(15), 155430 (2007)

    Article  ADS  Google Scholar 

  44. Y. Zheng, T. Ando, Hall conductivity of a two-dimensional graphite system. Phys. Rev. B 65(24), 245420 (2002)

    Article  ADS  Google Scholar 

  45. Y. Wu, L. Wen, Y. Zhu, Efficient hyper-Raman scattering in resonant coherent media. Opt. Lett. 28(8), 631–633 (2003)

    Article  ADS  Google Scholar 

  46. J. Chen, Z. Wang, B. Yu, Spatially dependent hyper-Raman scattering in five-level cold atoms. Opt. Express 29(7), 10914–10922 (2021)

    Article  ADS  Google Scholar 

  47. H. Zhang, S. Virally, Q. Bao, L.K. Ping, S. Massar, N. Godbout, P. Kockaert, Z-scan measurement of the nonlinear refractive index of graphene. Opt. Lett. 37(11), 1856–1858 (2012)

    Article  ADS  Google Scholar 

  48. E. Bolduc, N. Bent, E. Santamato, E. Karimi, R.W. Boyd, Exact solution to simultaneous intensity and phase encryption with a single phase-only hologram. Opt. Lett. 38(18), 3546–3549 (2013)

    Article  ADS  Google Scholar 

  49. F. Friederich, G. Schuricht, A. Deninger, F. Lison, G. Spickermann, P.H. Bolívar, H.G. Roskos, Phase-locking of the beat signal of two distributed-feedback diode lasers to oscillators working in the MHZ to THZ range. Opt. Express 18(8), 8621–8629 (2010)

    Article  ADS  Google Scholar 

  50. J.C. Konig-Otto, Y. Wang, A. Belyanin, C. Berger, W.A. De Heer, M. Orlita, A. Pashkin, H. Schneider, M. Helm, S. Winnerl, Four-wave mixing in landau-quantized graphene. Nano Lett. 17(4), 2184–2188 (2017)

    Article  ADS  Google Scholar 

  51. H. Funk, A. Knorr, F. Wendler, E. Malic, Microscopic view on landau level broadening mechanisms in graphene. Phys. Rev. B 92(20), 205428 (2015)

    Article  ADS  Google Scholar 

  52. M. Abbas, F. Badshah, H. Ali, A. Munir, Ziauddin,P. Zhang, Manipulation of giant kerr nonlinearity and doppler broadening on graphene’s landau level. Phys. Scr. 98, 075929 (2023)

  53. Y. Xu, Y.-Y. Huang, L. Hu, P. Zhang, D. Wei, H.-R. Li, H. Gao, F.-L. Li, Measurement of berry phase associated with higher dimensional orbital angular momentum of light by interference method. Chin. Phys. Lett. 30(10), 100304 (2013)

    Article  ADS  Google Scholar 

  54. L. Li, R. Zhang, Z. Zhao, G. Xie, P. Liao, K. Pang, H. Song, C. Liu, Y. Ren, G. Labroille, P. Jian, D. Starodubov, B. Lynn, R. Bock, M. Tur, A.E. Willner, High-capacity free-space optical communications between a ground transmitter and a ground receiver via a UAV using multiplexing of multiple orbital-angular-momentum beams. Sci. Rep. 7(1), 1–12 (2017)

    Google Scholar 

  55. Y. Chen, S. Liu, Y. Lou, J. Jing, Orbital angular momentum multiplexed quantum dense coding. Phys. Rev. Lett. 127(9), 093601 (2021)

    Article  ADS  Google Scholar 

Download references

Funding

National Natural Science Foundation of China (11774054, 12075036, 12104067); Science and Technology Research Project of Education Department of Hubei Province (Q20211314).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Shui or Wen-Xing Yang.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Shui, T., Zhang, T. et al. Coherent control of double-ring perfect optical vortex via hyper-Raman scattering in a Landau-quantized graphene. Eur. Phys. J. Plus 138, 737 (2023). https://doi.org/10.1140/epjp/s13360-023-04389-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04389-0

Navigation