Skip to main content
Log in

Geometrically constrained kink-like configurations engendering long-range, double-exponential, half-compact and compact behavior

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We describe a procedure that contributes to modify the asymptotic behavior of kinks in a model described by two real scalar fields. The investigation takes advantage of a first-order formalism based on energy minimization to unveil how to modify the asymptotic profile of kink-like configurations. In particular, we show that the exponential tails of standard kink-like configurations can be smoothly modified to engender long range, double exponential, half-compact or compact behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data.

References

  1. P. Sutcliffe, N. Manton, Topological solitons (Cambridge University Press, Cambridge, 2004)

    MATH  Google Scholar 

  2. T. Vachaspati, Kinks and Domain Walls: an introduction to classical and quantum solitons (Cambridge University Press, Cambridge, 2006)

    Book  MATH  Google Scholar 

  3. Y. Shnir, Topological and Non-Topological Solitons in Scalar Field Theories (Cambridge Monographs on Mathematical Physics, Cambridge, 2018)

    Book  MATH  Google Scholar 

  4. P.G. Kevrekidis, J. Cuevas-Maraver (eds.), A dynamical perspective on the Φ 4 model (Springer, Berlin, 2019)

    Google Scholar 

  5. A.J. Heeger, S. Kivelson, J.R. Schrieffer, W.-P. Su, Rev. Mod. Phys. 60, 781 (1988)

    Article  ADS  Google Scholar 

  6. M. Shifman, A. Yung, Rev. Mod. Phys. 79, 1139 (2007)

    Article  ADS  Google Scholar 

  7. C.J. Pethick, H. Smith, Bose-Einstein condensation in dilute gases (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  8. C. Becker et al., Nat. Phys. 4, 496 (2008)

    Article  Google Scholar 

  9. A. Hubert, R. Schafer, Magnetic domains: the analysis of magnetic microstructures (Springer, Berlin, 1998)

    Google Scholar 

  10. H. Arodz, Acta Phys. Polon. B 33, 1241 (2002)

    ADS  MathSciNet  Google Scholar 

  11. G. Flores-Hidalgo, N.F. Svaiter, Phys. Rev. D 66, 025031 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  12. G. Gaeta, EPL 79, 20003 (2007)

    Article  ADS  Google Scholar 

  13. A.R. Gomes, R. Menezes, J.C.R.E. Oliveira, Phys. Rev. D 86, 025008 (2012)

    Article  ADS  Google Scholar 

  14. D. Bazeia, L. Losano, M.A. Marques, R. Menezes, Phys. Lett. B 736, 515 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  15. D. Bazeia, L. Losano, M.A. Marques, R. Menezes, EPL 107, 61001 (2014)

    Article  ADS  Google Scholar 

  16. D. Bazeia, M.A. Marques, R. Menezes, Phys. Rev. D 92, 084058 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  17. D.F.S. Veras, W.T. Cruz, R.V. Maluf, C.A.S. Almeida, Phys. Lett. B 754, 201 (2016)

    Article  ADS  Google Scholar 

  18. D. Bazeia, R. Menezes, D.C. Moreira, J. Phys. Comm. 2, 055019 (2018)

    Article  ADS  Google Scholar 

  19. I.C. Christov, R.J. Decker, A. Demirkaya, V.A. Gani, P.G. Kevrekidis, A. Khare, A. Saxena, Phys. Rev. Lett. 122, 171601 (2019)

    Article  ADS  Google Scholar 

  20. A. Khare, A. Saxena, Phys. Scr. 95, 075205 (2020)

    Article  ADS  Google Scholar 

  21. J.G.F. Campos, A. Mohammadi, Phys. Lett. B 818, 136361 (2021)

    Article  Google Scholar 

  22. A. Khare, A. Saxena, Front. Phys. 10, 992915 (2022)

    Article  Google Scholar 

  23. Th.F. Gallagher, P. Pillet, Dipole-dipole interactions of rydberg atoms, in Advances in atomic, molecular, and optical physics, vol. 56, ed. by E. Arimondo, P.R. Berman, C.C. Lin (Elsevier, Amsterdam, 2008)

    Chapter  Google Scholar 

  24. M. Dijkstra, E. Luijten, Nat. Mater. 20, 762 (2021)

    Article  ADS  Google Scholar 

  25. I.C. Christov, R.J. Decker, A. Demirkaya, V.A. Gani, P.G. Kevrekidis, R.V. Radomskiy, Phys. Rev. D 99, 016010 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  26. D. Bazeia, A.R. Gomes, F.C. Simas, Eur. Phys. J. C 81, 532 (2021)

    Article  ADS  Google Scholar 

  27. A. Moradi Marjaneh, F.C. Simas, D. Bazeia, Chaos Solitons Fractals 164, 112723 (2022)

    Article  Google Scholar 

  28. D. Bazeia, J.G.F. Campos, A. Mohammadi, JHEP 05, 116 (2023)

    Article  ADS  Google Scholar 

  29. P.-O. Jubert, R. Allenspach, A. Bischof, Phys. Rev. B 69, 220410(R) (2004)

    Article  ADS  Google Scholar 

  30. D. Bazeia, M.A. Liao, M.A. Marques, Eur. Phys. J. Plus 135, 383 (2020)

    Article  Google Scholar 

  31. A.J. Balseyro Sebastian, D. Bazeia, M.A. Marques, EPL 141, 34003 (2023)

    Article  ADS  Google Scholar 

  32. E.B. Bogomol’nyi, Sov. J. Nucl. Phys. 24, 449 (1976)

    Google Scholar 

  33. I. Cho, A. Vilenkin, Phys. Rev. D 59, 021701 (1999)

    Article  ADS  Google Scholar 

  34. D. Bazeia, Phys. Rev. D 60, 067705 (1999)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Brazilian agency Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), grants Nos. 303469/2019-6 (DB), 306151/2022-7 (MAM) and 310994/2021-7 (RM). It is also supported by Paraiba State Research Foundation (FAPESQ-PB), grants Nos. 0003/2019 (RM) and 0015/2019 (DB and MAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Marques.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazeia, D., Marques, M.A. & Menezes, R. Geometrically constrained kink-like configurations engendering long-range, double-exponential, half-compact and compact behavior. Eur. Phys. J. Plus 138, 735 (2023). https://doi.org/10.1140/epjp/s13360-023-04385-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04385-4

Navigation