Skip to main content
Log in

Adaptive scans allow 3D-targeted laser dissection to probe the mechanics of cell sheets

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The mechanical actuation of cells by active forces from the cytoskeleton drives tissue morphogenesis. To understand these forces, multicellular laser dissection has become an essential tool for severing tissue locally and inferring tension from the recoil of surrounding structures. However, conventional laser dissection is limited by 2D steering, which is inadequate for embryos and developing tissues that are intrinsically 3D structures. In this study, we introduce a flexible near-infrared (NIR) fs-pulsed laser-dissection system that allows for dissection trajectories to proceed in 3D and adapt to the curved surfaces of cell sheets, which are prominent structures in embryos. Trajectories are computed through an unsupervised search for the surface of interest. Using this technique, we demonstrate sectioning of multicellular domains on curved tissue, which was not possible with regular NIR laser scanning. We apply the developed strategy to map mechanical stresses in the imaginal disc of the developing Drosophila wing. Our targeted, adaptive scans can be used in other nonlinear processes, such as two-photon fluorescence imaging or optogenetics. Overall, this new laser-dissection system offers an innovative solution for studying complex 3D structures and their mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data sets generated during the current study are available from the corresponding author on reasonable request. Matlab implementation of the surface estimation algorithm is available at https://www.fresnel.fr/perso/galland/LSA2021/.]

References

  1. C.-P. Heisenberg, Y. Bellaïche, Forces in tissue morphogenesis and patterning. Cell 153, 948–962 (2013)

    Article  Google Scholar 

  2. L. LeGoff, T. Lecuit, Mechanical forces and growth in animal tissues. Cold Spring Harb. Perspect. Biol. 8, a019232 (2016)

    Article  Google Scholar 

  3. E. Trubuil, A. D’Angelo, J. Solon, Tissue mechanics in morphogenesis: active control of tissue material properties to shape living organisms. Cells Dev. 168, 203777 (2021)

    Article  Google Scholar 

  4. P. Pantazis, W. Supatto, Advances in whole-embryo imaging: a quantitative transition is underway. Nat. Rev. Mol. Cell Biol. 15, 327–339 (2014)

    Article  Google Scholar 

  5. D. Stabley, C. Jurchenko, S. Marshall, K. Salaita, Visualizing mechanical tension across membrane receptors with a fluorescent sensor. Nat. Methods 9, 64–7 (2012). https://doi.org/10.1038/nmeth.1747

    Article  Google Scholar 

  6. J. Houser, C. Hayden, D. Thirumalai, J. Stachowiak, A förster resonance energy transfer-based sensor of steric pressure on membrane surfaces. J. Am. Chem. Soc. 142, 20796–20805 (2020). https://doi.org/10.1021/jacs.0c09802

    Article  Google Scholar 

  7. O. Campàs, T. Mammoto, S. Hasso, R.A. Sperling, D. O’connell, A.G. Bischof, R. Maas, D.A. Weitz, L. Mahadevan, D.E. Ingber, Quantifying cell-generated mechanical forces within living embryonic tissues. Nat. Methods 11, 183–189 (2014)

    Article  Google Scholar 

  8. M. Dolega, M. Delarue, F. Ingremeau, J. Prost, A. Delon, G. Cappello, Cell-like pressure sensors reveal increase of mechanical stress towards the core of multicellular spheroids under compression. Nat. Commun. 8, 1–9 (2017)

    Article  Google Scholar 

  9. M.S. Hutson, Y. Tokutake, M.-S. Chang, J.W. Bloor, S. Venakides, D.P. Kiehart, G.S. Edwards, Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. Science 300, 145–149 (2003)

    Article  ADS  Google Scholar 

  10. J. Colombelli, S.W. Grill, E.H. Stelzer, Ultraviolet diffraction limited nanosurgery of live biological tissues. Rev. Sci. Instrum. 75, 472–478 (2004)

    Article  ADS  Google Scholar 

  11. W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, E. Beaurepaire, In vivo modulation of morphogenetic movements in drosophila embryos with femtosecond laser pulses. Proc. Natl. Acad. Sci. 102, 1047–1052 (2005)

    Article  ADS  Google Scholar 

  12. M. Rauzi, P. Verant, T. Lecuit, P.-F. Lenne, Nature and anisotropy of cortical forces orienting drosophila tissue morphogenesis. Nat. Cell Biol. 10, 1401–1410 (2008)

    Article  Google Scholar 

  13. M. Smutny, M. Behrndt, P. Campinho, V. Ruprecht, C.-P. Heisenberg, Uv laser ablation to measure cell and tissue-generated forces in the zebrafish embryo in vivo and ex vivo. Methods Mol. Biol 1189, 219–35 (2015) https://doi.org/10.1007/978-1-4939-1164-6_15

  14. M. Rauzi, Probing tissue interaction with laser-based cauterization in the early developing drosophila embryo. Methods Cell Biol. 139, 153–165 (2017). https://doi.org/10.1016/bs.mcb.2016.11.003

    Article  Google Scholar 

  15. M. Rauzi, P.-F. Lenne, Cortical forces in cell shape changes and tissue morphogenesis. Curr. Top. Dev. Biol. 95, 93–144 (2011)

    Article  Google Scholar 

  16. K. Langer, Zur anatomie und physiologie der haut. über die spaltbarkeit der cutis. Sitzungsbericht der Mathematisch-naturwissenschaftlichen Classe der Wiener Kaiserlichen Academie der Wissenschaften 44 (1861)

  17. M. Ben Amar, P. Qiuyang-Qu, T.T.K. Vuong-Brender, M. Labouesse, Assessing the contribution of active and passive stresses in c. elegans elongation. Phys. Rev. Lett. 121, 268102 (2018)

    Article  ADS  Google Scholar 

  18. M. Ben Amar, P. Nassoy, L. LeGoff, Physics of growing biological tissues: the complex cross-talk between cell activity, growth and resistance. Philos. Trans. R. Soc. A 377, 20180070 (2019)

    Article  ADS  Google Scholar 

  19. I. Bonnet, P. Marcq, F. Bosveld, L. Fetler, Y. Bellaïche, F. Graner, Mechanical state, material properties and continuous description of an epithelial tissue. J. R. Soc. Interface 9, 2614–2623 (2012)

    Article  Google Scholar 

  20. I. Bonnet, P. Marcq, F. Bosveld, L. Fetler, Y. Bellaiche, F. Graner, Mechanical state, material properties and continuous description of an epithelial tissue. J. R. Soc. Interface / the R. Soc. 9, 2614–23 (2012). https://doi.org/10.1098/rsif.2012.0263

    Article  Google Scholar 

  21. N.A. Dye, M. Popović, K.V. Iyer, J.F. Fuhrmann, R. Piscitello-Gómez, S. Eaton, F. Jülicher, Self-organized patterning of cell morphology via mechanosensitive feedback. Elife 10, e57964 (2021)

    Article  Google Scholar 

  22. C. Guillot, T. Lecuit, Mechanics of epithelial tissue homeostasis and morphogenesis. Science 340, 1185–1189 (2013)

    Article  ADS  Google Scholar 

  23. A. D. Edelstein, M. A. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale, N. Stuurman, Advanced methods of microscope control using \(\mu\)manager software. J. Biol. Methods 1 (2014)

  24. G. de Medeiros, D. Kromm, B. Balazs, N. Norlin, S. Günther, E. Izquierdo, P. Ronchi, S. Komoto, U. Krzic, Y. Schwab et al., Cell and tissue manipulation with ultrashort infrared laser pulses in light-sheet microscopy. Sci. Rep. 10, 1–12 (2020)

    Article  Google Scholar 

  25. M. Niemz, Laser-Tissue Interactions: Fundamentals and Applications (Springer, Berlin, 2019). https://doi.org/10.1007/978-3-030-11917-1

    Book  MATH  Google Scholar 

  26. K. Sugimura, P.-F. Lenne, F. Graner, Measuring forces and stresses in situ in living tissues. Development 143, 186–196 (2016)

    Article  Google Scholar 

  27. J. Ackermann, P..-Q. Qu, L. LeGoff, M. Ben Amar, Modeling the mechanics of growing epithelia with a bilayer plate theory. Eur. Phys. J. Plus 137, 1–29 (2022)

    ADS  Google Scholar 

  28. F. Abouakil, H. Meng, M.-A. Burcklen, H. Rigneault, F. Galland, L. LeGoff, An adaptive microscope for the imaging of biological surfaces. Light Sci. Appl. 10, in press (2021)

  29. J.V. Beira, R. Paro, The legacy of drosophila imaginal discs. Chromosoma 125, 573–592 (2016)

    Article  Google Scholar 

  30. M.A. Fischler, R.C. Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  31. L. LeGoff, H. Rouault, T. Lecuit, A global pattern of mechanical stress polarizes cell divisions and cell shape in the growing drosophila wing disc. Development 140, 4051–4059 (2013)

    Article  Google Scholar 

  32. Y. Mao, A.L. Tournier, A. Hoppe, L. Kester, B.J. Thompson, N. Tapon, Differential proliferation rates generate patterns of mechanical tension that orient tissue growth. EMBO J. 32, 2790–2803 (2013)

    Article  Google Scholar 

  33. R. Farhadifar, J.-C. Röper, B. Aigouy, S. Eaton, F. Jülicher, The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr. Biol. CB 17, 2095–104 (2008). https://doi.org/10.1016/j.cub.2007.11.049

    Article  Google Scholar 

  34. K. Tanner, A. Boudreau, M.J. Bissell, S. Kumar, Dissecting regional variations in stress fiber mechanics in living cells with laser nanosurgery. Biophys. J . 99, 2775–2783 (2010)

    Article  Google Scholar 

  35. S.Z. Sullivan, R.D. Muir, J.A. Newman, M.S. Carlsen, S. Sreehari, C. Doerge, N.J. Begue, R.M. Everly, C.A. Bouman, G.J. Simpson, High frame-rate multichannel beam-scanning microscopy based on Lissajous trajectories. Opt. Express 22, 24224–24234 (2014)

    Article  ADS  Google Scholar 

  36. T. Deguchi, P. Bianchini, G. Palazzolo, M. Oneto, A. Diaspro, M. Duocastella, Volumetric Lissajous confocal microscopy with tunable spatiotemporal resolution. Biomed. Opt. Express 11, 6293–6310 (2020)

    Article  Google Scholar 

  37. M.-A. Burcklen, F. Galland, L. Le Goff, Optimizing sampling for surface localization in 3d-scanning microscopy. JOSA A 39, 1479–1488 (2022)

    Article  ADS  Google Scholar 

  38. B..F.. Grewe, F..F. Voigt, M.. van’t Hoff, F.. Helmchen, Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens. Biomed. Optic. Express 2, 2035–2046 (2011)

    Article  Google Scholar 

  39. W.J. Shain, N.A. Vickers, B.B. Goldberg, T. Bifano, J. Mertz, Extended depth-of-field microscopy with a high-speed deformable mirror. Opt. Lett. 42, 995–998 (2017)

    Article  ADS  Google Scholar 

  40. G. Salbreux, G. Charras, E. Paluch, Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol. 22, 536–545 (2012)

    Article  Google Scholar 

  41. A. Saha, M. Nishikawa, M. Behrndt, C.-P. Heisenberg, F. Jülicher, S.W. Grill, Determining physical properties of the cell cortex. Biophys. J . 110, 1421–1429 (2016)

    Article  Google Scholar 

  42. E. Izquierdo, T. Quinkler, S. De Renzis, Guided morphogenesis through optogenetic activation of rho signalling during early drosophila embryogenesis. Nat. Commun. 9, 1–13 (2018)

    Article  Google Scholar 

  43. R. Viswanathan, A. Necakov, M. Trylinski, R.K. Harish, D. Krueger, E. Esposito, F. Schweisguth, P. Neveu, S. De Renzis, Optogenetic inhibition of delta reveals digital notch signalling output during tissue differentiation. EMBO Rep. 20, e47999 (2019)

    Article  Google Scholar 

  44. F.H. Loesel, M.H. Niemz, J. Bille, T. Juhasz, Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: experiment and model. IEEE J. Quantum Electron. 32, 1717–1722 (1996)

    Article  ADS  Google Scholar 

  45. S.H. Chung, E. Mazur, Surgical applications of femtosecond lasers. J. Biophotonics 2, 557–572 (2009)

    Article  Google Scholar 

  46. N. Olivier, M.A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos et al., Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy. Science 329, 967–971 (2010)

    Article  ADS  Google Scholar 

  47. D.T. Sandwell, Biharmonic spline interpolation of geos-3 and seasat altimeter data. Geophys. Res. Lett. 14, 139–142 (1987). https://doi.org/10.1029/GL014i002p00139

    Article  ADS  Google Scholar 

  48. J. Huang, W. Zhou, W. Dong, A.M. Watson, Y. Hong, Directed, efficient, and versatile modifications of the drosophila genome by genomic engineering. Proc. Natl. Acad. Sci. 106, 8284–8289 (2009)

    Article  ADS  Google Scholar 

  49. V. Ajeti, A. P. Tabatabai, A. J. Fleszar, M. F. Staddon, D. S. Seara, C. Suarez, M. S. Yousafzai, D. Bi, D. R. Kovar, S. Banerjee, M. P. Murrell, Epithelial wound healing coordinates distinct actin network architectures to conserve mechanical work and balance power, arXiv (2018)

  50. C. Villeneuve, S. Mathieu, E. Lagoutte, B. Goud, P. Chavrier, J.-B. Manneville, C. Rossé, A new approach to measure forces at junction vertices in an epithelium, bioRxiv (2021). https://doi.org/10.1101/2021.06.18.448930. https://www.biorxiv.org/content/early/2021/06/18/2021.06.18.448930.full.pdf

  51. R. Fernandez-Gonzalez, S. de Matos Simoes, J.-C. Röper, S. Eaton, J.A. Zallen, Myosin ii dynamics are regulated by tension in intercalating cells. Dev. Cell 17, 736–743 (2009)

    Article  Google Scholar 

  52. X. Liang, M. Michael, G.A. Gomez, Measurement of mechanical tension at cell-cell junctions using two-photon laser ablation. Bio-Protoc. 6, e2068–e2068 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Sophie Brasselet for discussions on the project, Dana Bruner and Morgane Chauvet for technical help. This work was funded by the following agencies: Agence Nationale de la Recherche (ANR-18-CE13-028, ANR-17-CE30-0007, ANR-22-CE42-0010, ANR-22-CE13-0039); Excellence Initiative of Aix-Marseille University - A*Midex (capostromex), a French Investissements d’Avenir programme; This project is funded by the “France 2030” investment plan managed by the French National Research Agency (ANR-16-CONV-0001, ANR-21-ESRE-0002), and from Excellence Initiative of Aix-Marseille University - A*MIDEX. HM thanks the support of the China Scholarship Council(CSC).

Author information

Authors and Affiliations

Authors

Contributions

LLG conceived the experiments. HM built the apparatus with the help of MS and conducted most experiments except for two-photon microscopy, which was conducted by HM and DN. HM, FG, and LLG developed the algorithms and performed data analysis. LLG wrote the paper. All authors reviewed the manuscript.

Corresponding author

Correspondence to Loïc LeGoff.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 2265 KB)

Supplementary file 2 (avi 13703 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, H., Nuzhdin, D., Sison, M. et al. Adaptive scans allow 3D-targeted laser dissection to probe the mechanics of cell sheets. Eur. Phys. J. Plus 138, 733 (2023). https://doi.org/10.1140/epjp/s13360-023-04378-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04378-3

Navigation