Skip to main content
Log in

Structure determination of Gen (n = 4–30) clusters

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Determining the structures of germanium clusters can assist in comprehending the origins of the structures and properties of germanium bulk. As a result, it can pave the way for designing semiconductor materials with exceptional properties. Herein, we investigated the structural evolution and electronic properties of germanium clusters Gen (n = 4–30) at density functional theory (DFT) level. Low-lying isomers of these clusters have been globally searched by using a homemade genetic algorithm coupled with DFT calculations. The ground-state structures of all these Ge cluster anions have been identified by comparing the experimental and simulated photoelectron spectra (PES). In the studied size range of n = 4–30, the Ge clusters follow a simple growth pattern. From Ge4 to Ge9, a nine-atom tricapped trigonal prism (TTP) is stepwisely formed. The resulting TTP unit is then capped with the remaining excess atoms in the size range of n = 10–17. Ge18 to Ge30 result from two TTP units by incorporation of additional adatoms into the waist. The vertical detachment energy (VDE) curve for Gen displays a general increasing trend, while the HOMO–LUMO gap results are in an opposite trend. The average binding energies increase as the size increases, indicating that it is conducive to the formation of large clusters. It is found that sizes n = 7, 10, 13, 15 are the magic numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. A. Kant, B.H. Strauss, Atomization energies of the polymers of germanium, Ge2 to Ge7. J. Chem. Phys. 45, 822–826 (1966)

    Article  ADS  Google Scholar 

  2. T.P. Martin, H. Schaber, Mass spectra of Si, Ge, and Sn clusters. J. Chem. Phys. 83, 855–858 (1985)

    Article  ADS  Google Scholar 

  3. S. Yoshida, K. Fuke, Photoionization studies of germanium and tin clusters in the energy region of 5.0–8.8 eV: ionization potentials for Gen (n = 2–57) and Snn (n = 2–41). J. Chem. Phys. 111, 3880–3890 (1999)

    Article  ADS  Google Scholar 

  4. O. Cheshnovsky, S.H. Yang, C.L. Pettiette, M.J. Craycraft, Y. Liu, R.E. Smalley, Ultraviolet photoelectron spectroscopy of semiconductor clusters: silicon and germanium. Chem. Phys. Lett. 138, 119–124 (1987)

    Article  ADS  Google Scholar 

  5. Y. Negishi, H. Kawamata, T. Hayase, M. Gomei, R. Kishi, F. Hayakawa, A. Nakajima, K. Kaya, Photoelectron spectroscopy of germanium-fluorine binary cluster anions: the HOMO–LUMO gap estimation of Gen clusters. Chem. Phys. Lett. 269, 199–207 (1997)

    Article  ADS  Google Scholar 

  6. Y. Negishi, H. Kawamata, F. Hayakawa, A. Nakajima, K. Kaya, The infrared HOMO–LUMO gap of germanium clusters. Chem. Phys. Lett. 294, 370–376 (1998)

    Article  ADS  Google Scholar 

  7. H.-L. Xu, N.V. Tkachenko, D.W. Szczepanik, I.A. Popov, A. Muñoz-Castro, A.I. Boldyrev, Z.-M. Sun, Symmetry collapse due to the presence of multiple local aromaticity in Ge244−. Nat. Commun. 13, 2149 (2022)

    Article  ADS  Google Scholar 

  8. S. Ö̆güt, J.R. Chelikowsky, Structural changes induced upon charging Ge clusters. Phys. Rev. B 55, R4914–R4917 (1997)

    Article  ADS  Google Scholar 

  9. J. Wang, G. Wang, J. Zhao, Structure and electronic properties of Gen (n = 2–25) clusters from density-functional theory. Phys. Rev. B 64, 205411 (2001)

    Article  ADS  Google Scholar 

  10. S. Yoo, X.C. Zeng, Search for global-minimum geometries of medium-sized germanium clusters. II. Motif-based low-lying clusters Ge21–Ge29. J. Chem. Phys. 124, 184309 (2006)

    Article  ADS  Google Scholar 

  11. L. Wang, J. Zhao, Competition between supercluster and stuffed cage structures in medium-sized Gen (n = 30–39) clusters. J. Chem. Phys. 128, 024302 (2008)

    Article  ADS  Google Scholar 

  12. D. Wu, R. Shi, Q. Du, X. Wu, X. Liang, X. Huang, L. Sai, J. Zhao, Atomic structures and electronic properties of large-sized GeN clusters (N = 45, 50, 55, 60, 65, 70) by first-principles global search. J. Cluster Sci. 30, 371–377 (2019)

    Article  Google Scholar 

  13. W.-C. Lu, C.Z. Wang, L.-Z. Zhao, W. Zhang, W. Qin, K.M. Ho, Appearance of bulk-like motifs in Si, Ge, and Al clusters. Phys. Chem. Chem. Phys. 12, 8551–8556 (2010)

    Article  Google Scholar 

  14. Z. Mahdavifar, M. Afshari, A. Bagheri, A. Arab, Systematic investigation of structure and optoelectronic properties of Gen (n = 3–20), MGe9 (M = Ga, Si, Sn, As) and GaxGe(10−x) (x = 1–10) clusters: computational approach. Polyhedron 193, 114874 (2021)

    Article  Google Scholar 

  15. T.B. Tai, M.T. Nguyen, A stochastic search for the structures of small germanium clusters and their anions: enhanced stability by spherical aromaticity of the Ge10 and Ge122− systems. J. Chem. Theory Comput. 7, 1119–1130 (2011)

    Article  Google Scholar 

  16. J.M. Hunter, J.L. Fye, M.F. Jarrold, J.E. Bower, Structural transitions in size-selected germanium cluster ions. Phys. Rev. Lett. 73, 2063–2066 (1994)

    Article  ADS  Google Scholar 

  17. F. Neese, Software update: the ORCA program system—version 5.0. WIREs Comput. Mol. Sci. 12, e1606 (2022)

    Article  Google Scholar 

  18. K. Wang, Z.-Z. Jia, Z. Fan, H.-Y. Zhao, G.-J. Yin, R. Moro, B. von Issendorff, L. Ma, Structures and electronic properties of VSin (n = 14–20) clusters: a combined experimental and density functional theory study. Phys. Chem. Chem. Phys. 24, 8839–8845 (2022)

    Article  Google Scholar 

  19. K. Wang, G.-J. Yin, Z.-Z. Jia, L. Miao, R. Moro, B. von Issendorff, L. Ma, Anion photoelectron spectroscopy and density functional theory study of TM2Sin (TM = V, Cr; n = 14–20) clusters. Phys. Chem. Chem. Phys. 24, 18321–18330 (2022)

    Article  Google Scholar 

  20. K. Wang, H.-Y. Zhao, L. Miao, Z.-Z. Jia, G.-J. Yin, X.-D. Zhu, R. Moro, B. von Issendorff, L. Ma, Photoelectron spectroscopy and density functional investigation of the structural evolution, electronic, and magnetic properties of CrSin (n = 14–18) clusters. J. Phys. Chem. A 126, 1329–1335 (2022)

    Article  Google Scholar 

  21. K. Wang, G.-J. Yin, Z.-Z. Jia, L. Miao, H.-Y. Zhao, R. Moro, B. von Issendorff, L. Ma, Structural evolution, electronic and magnetic properties investigation of V3Sin (n = 14–18) clusters based on photoelectron spectroscopy and density functional theory calculations. Chem. Phys. Lett. 820, 140423 (2023)

    Article  Google Scholar 

  22. K. Wang, Z.-Z. Jia, R.-Y. Wang, X.-D. Zhu, R. Moro, L. Ma, TMGe8–17 (TM = Ti, Zr, Hf, V, Nb, Ta) clusters: group determined properties. Eur. Phys. J. Plus 137, 949 (2022)

    Article  Google Scholar 

  23. K. Wang, L. Miao, Z. Jia, R. Wang, G. Yin, X. Zhu, R. Moro, L. Ma, Structural evolution and electronic properties of pure and semiconductor atom doped in clusters: Inn, InnSi, and InnGe (n = 3–16). J. Comput. Chem. 43, 1978–1984 (2022)

    Article  Google Scholar 

  24. K. Wang, Cr2Gen (n = 15–20) clusters with two Cr atoms exhibited antiferromagnetic coupling. J. Comput. Chem. 44, 1667–1672 (2023)

    Article  Google Scholar 

  25. M. Orio, D.A. Pantazis, Frank neese, density functional theory. Photosynth. Res. 102, 443–453 (2009)

    Article  Google Scholar 

  26. A. Bafekry, M. Faraji, S. Karbasizadeh, A.B. Khatibani, A.A. Ziabari, D. Gogova, M. Ghergherehchi, Point defects in two-dimensional BeO monolayer: a first-principles study on electronic and magnetic properties. Phys. Chem. Chem. Phys. 23, 24301 (2021)

    Article  Google Scholar 

  27. A. Bafekry, M. Faraji, C. Stampfl, I.A. Sarsari, A.A. Ziabari, N.N. Hieu, S. Karbasizadeh, M. Ghergherehchi, Band-gap engineering, magnetic behavior and dirac-semimetal character in the MoSi2 N4 nanoribbon with armchair and zigzag edges. J. Phys. D Appl. Phys. 55, 035301 (2022)

    Article  ADS  Google Scholar 

  28. A. Bafekry, M. Faraji, M.M. Fadlallah, H.R. Jappor, S. Karbasizadeh, M. Ghergherehchi, I.A. Sarsari, A.A. Ziabari, Novel two-dimensional AlSb and InSb monolayers with a double-layer honeycomb structure: a first-principles study. Phys. Chem. Chem. Phys. 23, 18752–18759 (2021)

    Article  Google Scholar 

  29. J.P. Perdew, W. Yue, Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation. Phys. Rev. B 33, 8800–8802 (1986)

    Article  ADS  Google Scholar 

  30. A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988)

    Article  ADS  Google Scholar 

  31. F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005)

    Article  Google Scholar 

  32. F. Weigend, Accurate coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006)

    Article  Google Scholar 

  33. D. Rappoport, F. Furche, Property-optimized Gaussian basis sets for molecular response calculations. J. Chem. Phys. 133, 134105 (2010)

    Article  ADS  Google Scholar 

  34. L.-F. Cui, L.-M. Wang, L.-S. Wang, Evolution of the electronic properties of Snn clusters (n = 4–45) and the semiconductor-to-metal transition. J. Chem. Phys. 126, 064505 (2007)

    Article  ADS  Google Scholar 

  35. J. Akola, M. Manninen, H. Häkkinen, U. Landman, X. Li, L.-S. Wang, Photoelectron spectra of aluminum cluster anions: temperature effects and ab initio simulations. Phys. Rev. B 60, R11297–R11300 (1999)

    Article  ADS  Google Scholar 

  36. W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    Article  Google Scholar 

  37. Z.-Y. Lu, C.-Z. Wang, K.-M. Ho, Structures and dynamical properties of Cn, Sin, Gen, and Snn clusters with n up to 13. Phys. Rev. B 61, 2329–2334 (2000)

    Article  ADS  Google Scholar 

  38. L.-Z. Zhao, W.-C. Lu, W. Qin, Q.-J. Zang, C.Z. Wang, K.M. Ho, Fragmentation behavior of Gen clusters (2≤n≤33). Chem. Phys. Lett. 455, 225–231 (2008)

    Article  ADS  Google Scholar 

  39. A.A. Shvartsburg, B. Liu, M.F. Jarrold, K.-M. Ho, Modeling ionic mobilities by scattering on electronic density isosurfaces: application to silicon cluster anions. J. Chem. Phys. 112, 4517–4526 (2000)

    Article  ADS  Google Scholar 

  40. W. Qin, W.-C. Lu, L.-Z. Zhao, Q.-J. Zang, C.Z. Wang, K.M. Ho, Stabilities and fragmentation energies of Sin clusters (n = 2–33). J. Phys. Condens. Matter 21, 455501 (2009)

    Article  Google Scholar 

  41. D. Wu, Q. Du, X. Wu, R. Shi, L. Sai, X. Liang, X. Huang, J. Zhao, Evolution of atomic structures of SnN, SnN, and SnNCl clusters (N = 4–20): insight from ab initio calculations. J. Chem. Phys. 150, 174304 (2019)

    Article  ADS  Google Scholar 

  42. S. Bulusu, S. Yoo, X.C. Zeng, Search for global minimum geometries for medium sized germanium clusters: Ge12–Ge20. J. Chem. Phys. 122, 164305 (2005)

    Article  ADS  Google Scholar 

  43. K.-M. Ho, A.A. Shvartsburg, B. Pan, Z.-Y. Lu, C.-Z. Wang, J.G. Wacker, J.L. Fye, M.F. Jarrold, Structures of medium-sized silicon clusters. Nature 392, 582–585 (1998)

    Article  ADS  Google Scholar 

  44. X. Wu, X. Liang, Q. Du, J. Zhao, M. Chen, M. Lin, J. Wang, G. Yin, L. Ma, R.B. King, B. von Issendorff, Medium-sized (n = 14–20) clusters: a combined study of photoelectron spectroscopy and DFT calculations. J. Phys. Condens. Matter 30, 354002 (2018)

    Article  Google Scholar 

  45. S. Yoo, X.C. Zeng, Motif transition in growth patterns of small to medium-sized silicon clusters. Angew. Chem. Int. Ed. 44, 1491–1494 (2005)

    Article  Google Scholar 

  46. L. Ma, B.V. Issendorff, A. Aguado, Photoelectron spectroscopy of cold aluminum cluster anions: comparison with density functional theory results. J. Chem. Phys. 132, 104303 (2010)

    Article  ADS  Google Scholar 

  47. A. Aguado, A. Vega, A. Lebon, B. von Issendorff, Are zinc clusters really amorphous? A detailed protocol for locating global minimum structures of clusters. Nanoscale 10, 19162–19181 (2018)

    Article  Google Scholar 

  48. O. Kostko, B. Huber, M. Moseler, B. von Issendorff, Structure determination of medium-sized sodium clusters. Phys. Rev. Lett. 98, 043401 (2007)

    Article  ADS  Google Scholar 

  49. B. Huber, M. Moseler, O. Kostko, B.V. Issendorff, Structural evolution of the sodium cluster anions Na20–Na57. Physical Review B 80, 235425 (2009)

    Article  ADS  Google Scholar 

  50. J. Müller, B. Liu, A.A. Shvartsburg, S. Ogut, J.R. Chelikowsky, K.W.M. Siu, K.-M. Ho, G. Gantefor, Spectroscopic evidence for the tricapped trigonal prism structure of semiconductor clusters. Phys. Rev. Lett. 85, 1666–1669 (2000)

    Article  ADS  Google Scholar 

  51. J. Bai, L.-F. Cui, J. Wang, S. Yoo, X. Li, J. Jellinek, C. Koehler, T. Frauenheim, L.-S. Wang, X.C. Zeng, Structural evolution of anionic silicon clusters SiN (20 ≤ N ≤ 45). J. Phys. Chem. A 110, 908–912 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Introduction of Talent Research Start-up Fund of Henan University of Urban Construction (Grant No. K-Q2023048).

Funding

This work was funded by the Introduction of Talent Research Start-up Fund of Henan University of Urban Construction (K-Q2023048), Kai Wang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3745 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Wang, C. & Li, W. Structure determination of Gen (n = 4–30) clusters. Eur. Phys. J. Plus 138, 740 (2023). https://doi.org/10.1140/epjp/s13360-023-04376-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04376-5

Navigation