Skip to main content
Log in

A novel design of coplanar 8-bit ripple carry adder using field-coupled quantum-dot cellular automata nanotechnology

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Quantum-dot cellular automata (QCA) is a prominent research field that can replace MOS technology due to constraints of short-channel effects, power consumption and lithography costs. This manuscript presents novel and efficient designs of various combinational circuits that are XOR gate, half adders (HA), full adders (FA), half subtractor (HS), full subtractor (FS), ripple carry adder (RCA) and (2 × 1) multiplexer. This study presents an innovative concept for digital circuits that can be implemented in a single layer by using 90° cells in clock zones. The suggested circuit architectures are relatively basic and straightforward to construct a robust QCA layout. One may reduce the overall size and the number of QCA cells by using the aforementioned designs and incorporating them into bigger circuits, such as the 4-bit and 8-bit RCA. Every design suggested in the study is compared to a design already published in the literature, and it is discovered that the suggested designs are much superior in terms of latency, area, number of cells and gate counts. QCADesigner tool confirms the functional correctness of proposed circuits. All newly created FAs, Design 1, Design 2, Design 3 and Design 4, exhibit cell count improvements of 18.88%, 40%, 46.66% and 4.44%, respectively, compared to the best-reported design. The area efficiency improves by up to 83.6% and 35.11%, respectively, while the cell count improves by 67.8% and 25.15% for 4-bit and 8-bit RCA adders, indicating that they are more suited for computational sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability Statement

No data are associated with the manuscript.

References

  1. F. Qadir, P.Z. Ahmad, S.J. Wani, M.A. Peer, Quantum-dot cellular automata: theory and application (2014). https://doi.org/10.1109/ICMIRA.2013.113

  2. N. Pathak, N.K. Misra, B.K. Bhoi, S. Kumar, Optimization of parameters of adders and barrel shifter based on emerging QCA technology. Radioelectron. Commun. Syst. 64(10), 535–547 (2021)

    Article  Google Scholar 

  3. A.N. Bahar, S. Waheed, Design and implementation of an efficient single layer five input majority voter gate in quantum-dot cellular automata. Springerplus (2016). https://doi.org/10.1186/s40064-016-2220-7

    Article  Google Scholar 

  4. S. Kassa, S. Nema, Energy efficient novel design of static random access memory memory cell in quantum-dot cellular automata approach. Int. J. Eng. Trans. B Appl. (2019). https://doi.org/10.5829/ije.2019.32.05b.14

    Article  Google Scholar 

  5. M. Vahabi, E. Rahimi, P. Lyakhov, A.N. Bahar, K.A. Wahid, A. Otsuki, Novel quantum-dot cellular automata-based gate designs for efficient reversible computing. Sustainability (2023). https://doi.org/10.3390/su15032265

    Article  Google Scholar 

  6. S. Kassa, P. Gupta, M. Kumar, T. Stephan, R. Kannan, Rotated majority gate-based 2n-bit full adder design in quantum-dot cellular automata nanotechnology. Circuit World (2022). https://doi.org/10.1108/CW-06-2020-0120

    Article  Google Scholar 

  7. P.D. Tougaw, C.S. Lent, Logical devices implemented using quantum cellular automata. J. Appl. Phys. (1994). https://doi.org/10.1063/1.356375

    Article  Google Scholar 

  8. S.R. Kassa, R.K. Nagaria, A novel design of quantum dot cellular automata 5-input majority gate with some physical proofs. J. Comput. Electron. (2016). https://doi.org/10.1007/s10825-015-0757-2

    Article  Google Scholar 

  9. S. Karthigai Iakshmi, G. Athisha, M. Karthikeyan, C. Ganesh, Design of subtractor using nanotechnology based QCA (2010). https://doi.org/10.1109/ICCCCT.2010.5670582

  10. A.O. Orlov, I. Amlani, G.H. Bernstein, C.S. Lent, G.L. Snider, Realization of a functional cell for quantum-dot cellular automata. Science (80-.) 277(5328), 928–930 (1997). https://doi.org/10.1126/science.277.5328.928

    Article  Google Scholar 

  11. S.S. Kavitha, N. Kaulgud, Quantum dot cellular automata (QCA) design for the realization of basic logic gates, in International Conference on Electrical, Electronics, Communication Computer Technologies and Optimization Techniques, ICEECCOT 2017, 2018, vol. 2018-January. https://doi.org/10.1109/ICEECCOT.2017.8284519

  12. S.R. Kassa, N.K. Misra, R. Nagaria, Design, synthesis and assessment of QCA primitives of 5-input majority gate in field-coupled QCA nanotechnology. Optik (Stuttg) 271, 170059 (2022). https://doi.org/10.1016/j.ijleo.2022.170059

    Article  ADS  Google Scholar 

  13. S.K. Lakshmi, G. Athisha, Efficient design of logical structures and functions using nanotechnology based quantum dot cellular automata design. Int. J. Comput. Appl. (2010). https://doi.org/10.5120/726-1019

    Article  Google Scholar 

  14. F. Ahmad, M. Mustafa, N.A. Wani, F.A. Mir, A novel idea of pseudo-code generator in quantum-dot cellular automata (QCA). Int. J. Simul. Multidiscip. Des. Optim. (2014). https://doi.org/10.1051/smdo/2013012

    Article  Google Scholar 

  15. A.N. Bahar, S. Waheed, N. Hossain, M. Asaduzzaman, A novel 3-input XOR function implementation in quantum dot-cellular automata with energy dissipation analysis. Alex. Eng. J. (2018). https://doi.org/10.1016/j.aej.2017.01.022

    Article  Google Scholar 

  16. M.D.W.R. Akeela, A five input majority gate in quantum dot cellular automata. Nanotechnology 2, 13–16 (2011)

    Google Scholar 

  17. S. Hashemi, K. Navi, Designing quantum-dot cellular automata circuits using a robust one layer crossover scheme. J. Eng. 3, 2014 (2014). https://doi.org/10.1049/joe.2013.0177

    Article  Google Scholar 

  18. S. Hashemi, K. Navi, A novel robust QCA full-adder. Procedia Mater. Sci. (2015). https://doi.org/10.1016/j.mspro.2015.11.133

    Article  Google Scholar 

  19. S.A. Ebrahimi, M.R. Reshadinezhad, Exploring and exploiting quantum-dot cellular automata. Int. J. Nanosci. Nanotechnol. 11(4), 225–232 (2015)

    Google Scholar 

  20. M. Qanbari, R. Sabbaghi-Nadooshan, Two novel quantum-dot cellular automata full adders. J. Eng. (United Kingdom) (2013). https://doi.org/10.1155/2013/561651

    Article  Google Scholar 

  21. A. Safavi, M. Mosleh, Short communication presenting a new efficient QCA full adder based on suggested MV32 gate. Int. J. Nanosci. Nanotechnol. 12(1), 55–69 (2016)

    Google Scholar 

  22. S. Bhanja, M. Ottavi, F. Lombardi, S. Pontarelli, QCA circuits for robust coplanar crossing. J. Electron. Test. Theory Appl. (2007). https://doi.org/10.1007/s10836-006-0551-y

    Article  Google Scholar 

  23. S. Seyedi, N.J. Navimipour, An optimized three-level design of decoder based on nanoscale quantum-dot cellular automata. Int. J. Theor. Phys. 57(7), 2022–2033 (Jul.2018). https://doi.org/10.1007/s10773-018-3728-0

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Cho, E.E. Swartzlander, Adder and multiplier design in quantum-dot cellular automata. IEEE Trans. Comput. (2009). https://doi.org/10.1109/TC.2009.21

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Roohi, H. Khademolhosseini, S. Sayedsalehi, K. Navi, A symmetric quantum-dot cellular automata design for 5-input majority gate. J. Comput. Electron. (2014). https://doi.org/10.1007/s10825-014-0589-5

    Article  Google Scholar 

  26. S.S. Ramachandran, K.J.J. Kumar, Design of a 1-bit half and full subtractor using a quantum-dot cellular automata (QCA) (2018). https://doi.org/10.1109/ICPCSI.2017.8392132

  27. M. Raj, L. Gopalakrishnan, S.B. Ko, Design and analysis of novel QCA full adder-subtractor. Int. J. Electron. Lett. (2021). https://doi.org/10.1080/21681724.2020.1726479

    Article  Google Scholar 

  28. J.C. Das, D. De, Shannon’s expansion theorem-based multiplexer synthesis using QCA. Nanomater. Energy (2016). https://doi.org/10.1680/jnaen.15.00008

    Article  Google Scholar 

  29. M.R. Beigh, M. Mustafa, F. Ahmad, Performance evaluation of efficient XOR structures in quantum-dot cellular automata (QCA). Circuits Syst. (2013). https://doi.org/10.4236/cs.2013.42020

    Article  Google Scholar 

  30. S. Rani, T.N. Sasamal, Design of QCA circuits using new 1D clocking schemes, in 2017 2nd International Conference on Telecommunication and Networks (TEL-NET), pp. 1–6 (2017)

  31. S.K. Lakshmi, G. Athisha, Design and analysis of adders using nanotechnology based quantum dot cellular automata. J. Comput. Sci. (2011). https://doi.org/10.3844/jcssp.2011.1072.1079

    Article  Google Scholar 

  32. S.T.Y. Chan, C.F. Chau, A. Bin Ghazali, Design of a 4-bit ripple adder using quantum-dot cellular automata (QCA) (2013). https://doi.org/10.1109/CircuitsAndSystems.2013.6671634

  33. H. Cho, E.E. Swartzlander, Adder designs and analyses for quantum-dot cellular automata. IEEE Trans. Nanotechnol. (2007). https://doi.org/10.1109/TNANO.2007.894839

    Article  Google Scholar 

  34. S. Seyedi, A. Ghanbari, N.J. Navimipour, New design of a 4-bit ripple carry adder on a nano-scale quantum-dot cellular automata. Moscow Univ. Phys. Bull. (2019). https://doi.org/10.3103/S0027134919050126

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SK was involved in conceptualization, visualization, project administration, formal analysis, methodology, validation, supervision, writing—original draft and writing—reviewing and editing. NKM was responsible for visualization, conceptualization, validation, formal analysis, methodology, writing—original draft and writing—reviewing and editing. SSA contributed to visualization, formal analysis, methodology validation, supervision and writing—reviewing and editing. VL took part in visualization, methodology validation, supervision and writing—review. NV participated in formal analysis, visualization, methodology validation, supervision and writing—review.

Corresponding author

Correspondence to Neeraj Kumar Misra.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kassa, S., Misra, N.K., Ahmadpour, S.S. et al. A novel design of coplanar 8-bit ripple carry adder using field-coupled quantum-dot cellular automata nanotechnology. Eur. Phys. J. Plus 138, 731 (2023). https://doi.org/10.1140/epjp/s13360-023-04369-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04369-4

Navigation