Skip to main content
Log in

Bioconvection in Eyring–Powell fluid with composite features of variable viscosity and motile microorganism density

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The yield stress in non-Newtonian fluids is intriguing. Their behaviours and properties transform under different conditions, such as pressure, temperature, concentration, and motile density. Consider a fascinating biological system where temperature differences ignite microorganism activity and production rates, explaining the need for refrigeration and similar processes. As such, the current model breaks free from constant assumptions about fluid properties and mathematically predicts changes in thermal conductivity and mass diffusivity, while viscosity and motile variation are modelled as a composite function of microorganism density and fluid temperature. The bio-convection phenomenon arises when microorganisms self-propel the Eyring–Powell fluid past a three-dimensional Riga plate, driven by stretching velocity. It is an intriguing interplay. To gain deeper insights into the flow model parameters, the weighted residual method (Galerkin approach) is employed to solve the model systems while the findings are presented through tables and graphs. Improving the temperature- and microorganism-dependent variable viscosity significantly decreases the fluid velocities and motile density movement but enhances the temperature and fluid concentration. Conversely, the response of temperature- and microorganism-dependent variable motile density variation energizes the flow momentum and decreases the fluid concentration considerably. For the variable viscosity parameter, \(\xi _1 \in [0,0.5]\), the skin drag force and local motile number increase by 22.6% and 5.98%, respectively. Additionally, 100% increment in variable motile density number downsized the skin friction by 289.36% while the local motile density appreciates by 18.90%. In general, the results obtained here are found to be applicable in biophysics, environmental science, and engineering systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

p :

Pressure

I :

The identity tensor

\(\mu\) :

Dynamic viscosity

\(\beta _{\mathrm{m}}\) and \(\beta _{\mathrm{n}}\) :

Eyring–Powell fluid parameters

\({\textbf {J}}_1\) :

Rivlin–Ericksen tensor

\(j_0\) :

Current density

\(M_0\) :

Surface magnetic property

\(r_0\) :

Diameter of the magnets

\(\mu\) :

Variable fluid viscosity

\(\rho _{\mathrm{f}}\) :

Fluid density

\(\kappa (T)\) :

Variable temperature

\(\mu\) :

Variable fluid viscosity

\(D_{\mathrm{o}}\) :

Mass diffusivity

C :

Fluid concentration

C :

Fluid concentration

T :

Fluid temperature

\(\rho\) :

Fluid density

\(C_{\mathrm{p}}\) :

Specific heat capacity

\(\nu\) :

Kinematic viscosity

w, v, and u :

Components along

z, y, and x :

Axis

Pe:

Peclet number

\(\beta\), \(\Delta _{v}\), and \(\Delta _{u}\) :

Powell–Eyring fluid parameters

N :

Motile concentration

\(U_0\) and \(V_0\) :

Streatching velocities

Le:

Lewis number

\(\hbox {Ec}_x\) and \(\hbox {Ec}_y\) :

Local Eckert number

\(\lambda\) :

Bioconvection constant

Gn:

Gyrotactic Grashof number

Gc:

Mass Grashof number

Gr:

Thermal Grashof number

Pr:

Prandtl number

Sc:

Schmidt number

\(\epsilon _2\) :

Stretching ratio

\(\epsilon _1\) :

Material constant

\(\xi _1\) :

Variable viscosity

\(\xi _2\) :

Variable thermal conductivity

\(\xi _3\) :

Variable mass concentration

\(\xi _4\) :

Variable motile density

J :

Modified Hartman number

\(\hbox {Re}_x\) :

Reynolds number

\(f_1\) and \(f_2\) :

Dimensionless velocities

\(\Theta\) :

Dimensionless temperature

\(\gamma\) :

Dimensionless concentration

\(\chi\) :

Dimensionless motile concentration

References

  1. M.G. Ibrahim, Concentration-dependent viscosity effect on magnetonano peristaltic flow of Powell-Eyring fluid in a divergent-convergent channel. Int. Commun. Heat Mass Transf. 134, 105987 (2022)

    Article  Google Scholar 

  2. T. Sajid, S. Tanveer, Z. Sabir, J.L.G. Guirao, Impact of activation energy and temperature-dependent heat source/sink on Maxwell-Sutterby fluid. Math. Probl. Eng. (2020). https://doi.org/10.1155/2020/5251804

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Sajid, M. Sagheer, S. Hussain Impact of temperature-dependent heat source/sink and variable species diffusivity on radiative Reiner-Philippoff fluid. Math. Probl. Eng. 2020(16) (2020)

  4. A.S. Idowu, J.O. Olabode, Thermochemistry and viscous dissipative effects on unsteady upper-convected maxwell fluid flow past a stretching vertical plate with thermophysical variables. Heat Transf. 50(3), 2950–2974 (2021)

    Article  Google Scholar 

  5. M.T. Akolade, A.T. Adeosun, J.O. Olabode, Influence of thermophysical features on MHD squeezed flow of dissipative Casson fluid with chemical and radiative effects. J. Appl. Comput. Mech. 7(4), 1999–2009 (2021)

    Google Scholar 

  6. A. Hussain, S. Ghafoor, M.Y. Malik, S. Jamal, An exploration of viscosity models in the realm of kinetic theory of liquids originated fluids. Results Phys. 7, 2352–60 (2017). https://doi.org/10.1016/j.rinp.2017.06.036

    Article  ADS  Google Scholar 

  7. A. Parmar, S. Jain, MHD powell-eyring fluid flow with non-linear radiation and variable thermal conductivity over a permeable cylinder. Int. J. Heat Technol. 36(1), 56–64 (2018)

    Article  Google Scholar 

  8. R. Ellahi, M. Raza, K. Vafai, Series solutions of non-Newtonian nanofluids with Reynolds’ model and Vogel’s model by means of the homotopy analysis method. Math. Comput. Model. 55(7–8), 1876–1891 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Z. Khan, W.A. Khan, H. Ur Rasheed, I. Khan, K.S. Nisar, Melting flow in wire coating of a third grade fluid over a die using Reynolds’ and Vogel’s models with non-linear thermal radiation and Joule heating. Materials (Basel) 12(19), 3074 (2019). https://doi.org/10.3390/ma12193074

    Article  ADS  Google Scholar 

  10. S.P.A. Devi, M. Prakash, Temperature dependent viscosity and thermal conductivity effects on hydromagnetic flow over a slendering stretching sheet. J. Niger. Math. Soc. 34(3), 318–330 (2015). https://doi.org/10.1016/j.jnnms.2015.07.002

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Pal, M. Mondal, Effects of temperature-dependent viscosity and variable thermal conductivity on MHD non-Darcy mixed convective diffusion of species over a stretching sheet. J. Egypt. Math. Soc. 22(1), 123–133 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Kalpana, K.R. Madhura, R.B. Kudenatti, Impact of temperature-dependant viscosity and thermal conductivity on MHD boundary layer flow of two-phase dusty fluid through permeable medium. Eng. Sci. Technol. Int. J. 22(2), 416–427 (2019)

    Google Scholar 

  13. J.O. Olabode, A.S. Idowu, M.T. Akolade, E.O. Titiloye, Unsteady flow analysis of Maxwell fluid with temperature dependent variable properties and quadratic thermo-solutal convection influence. Partial. Diff. Equ. Appl. Math. 4, 100078 (2021)

    Google Scholar 

  14. M.T. Akolade, Y.O. Tijani, A comparative study of three dimensional flow of Casson-Williamson nanofluids past a Riga plate: spectral quasi-linearization approach. Partial Differ. Equ. Appl. Math. 2021(4), 100108 (2021)

    Article  Google Scholar 

  15. M.M. Bhatti, M. Marin, A. Zeeshan, R. Ellahi, S.I. Abdelsalam, Swimming of motile gyrotactic microorganisms and nanoparticles in blood flow through anisotropically tapered arteries. Front. Phys. (2020). https://doi.org/10.3389/fphy.2020.00095

    Article  Google Scholar 

  16. Munees Ahemad, Mulugeta Kibret, Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J. King Saud Univ. Sci. 26(1), 1–20 (2014)

    Article  Google Scholar 

  17. M. Ferdows, M.G. Reddy, S. Sun, F. Alzahrani, Two-dimensional gyrotactic microorganisms flow of hydromagnetic power law nanofluid past an elongated sheet. Adv. Mech. Eng. (2019). https://doi.org/10.1177/1687814019881252

    Article  Google Scholar 

  18. H. Alrabaiah, I. Haq, A. Saeed, A. Dawar, W. Weera, A.M. Galal, Generalized heat and mass transport features of MHD Maxwell nanofluid flows past a linearly Bi-stretching surface in the presence of motile microorganisms and chemical reaction. S. Afr. J. Chem. Eng. 43, 146–161 (2023)

    Google Scholar 

  19. S. Rana, R. Mehmood, M.M. Bhatti, M. Hassan, Swimming of motile gyrotactic microorganisms and suspension of nanoparticles in a rheological Jeffery fluid with Newtonian heating along elastic surface. J. Cent. South Univ. 28(11), 3279–3296 (2021)

    Article  Google Scholar 

  20. A.K. Kushwaha, Y.D. Sharma, S. Saini, Impact of vertical vibration and gyrotactic microorganisms on stability of thermo-bioconvection. Mech. Res. Commun. 116, 103769 (2021)

    Article  Google Scholar 

  21. S.U. Khan, K. Al-Khaled, M.M. Bhatti, Bioconvection analysis for flow of Oldroyd-B nanofluid configured by a convectively heated surface with partial slip effects. Surf. Interfaces 23, 100982 (2021)

    Article  Google Scholar 

  22. M.S. Alqarni, S. Yasmin, H. Waqas, S.A. Khan, Recent progress in melting heat phenomenon for bioconvection transport of nanofluid through a lubricated surface with swimming microorganisms. Sci. Rep. 12(1), 8447 (2022)

    Article  ADS  Google Scholar 

  23. L. Zhang, V. Puneeth, M. Ijaz Khan, E.R. El-Zahar, N. Manjunath, N.A. Shah, M.I. Khan, Applications of bioconvection for tiny particles due to two concentric cylinders when role of Lorentz force is significant. PLoS ONE 17(5), e0265026 (2022)

    Article  Google Scholar 

  24. T. Javed, N. Ali, Z. Abbas, M. Sajid, Flow of an Eyring-Powell non-Newtonian fluid over a stretching sheet. Chem. Eng. Commun. 200(3), 327–336 (2013)

    Article  Google Scholar 

  25. H.A. Ogunseye, S.O. Salawu, Y.O. Tijani, M. Riliwan, P. Sibanda, Dynamical analysis of hydromagnetic Brownian and thermophoresis effects of squeezing Eyring-Powell nanofluid flow with variable thermal conductivity and chemical reaction. Multidiscip. Model. Mater. Struct. 15(6), 1100–1120 (2019)

    Article  Google Scholar 

  26. K. Al-Khaled, T. Abbas, M. Naeem, S.U. Khan, M. Saeed, Significance of Melting Heat Transfer and Brownian Motion on Flow of Powell-Eyring Fluid Conveying Nano-Sized Particles with Improved Energy Systems. Lubricants 11, 32 (2023). https://doi.org/10.3390/lubricants11010032

    Article  Google Scholar 

  27. Y.A.S. El-Masry, Y. Abd Elmaboud, M.A. Abdel-Sattar, The impacts of varying magnetic field and free convection heat transfer on an Eyring-Powell fluid flow with peristalsis: VIM solution. J. Taibah Univ. Sci. 14(1), 19–30 (2020). https://doi.org/10.1080/16583655.2019.1698277

    Article  Google Scholar 

  28. A.K. Abdul Hakeem, P. Ragupathi, S. Saranya, B. Ganga, Three dimensional non-linear radiative nanofluid flow over a Riga plate. J. Appl. Comput. Mech. 6(4), 1012–1029 (2020). https://doi.org/10.22055/JACM.2019.30095.1678

    Article  Google Scholar 

  29. M. Irfan, W.A. Khan, M. Khan, M.M. Gulzar, Influence of Arrhenius activation energy in chemically reactive radiative flow of 3D Carreau nanofluid with nonlinear mixed convection. J. Phys. Chem. Solids 125, 141–152 (2019)

    Article  ADS  Google Scholar 

  30. A. Bardow, V. Goke, H.-J. Kob, K. Lucas, W. Marquardt, Concentration-dependent diffusion coefficients from a single experiment using model-based Raman spectroscopy. Fluid Phase Equilib. 228–229, 357–366 (2005)

    Article  Google Scholar 

  31. R. Sivaraj, A. Jasmine Benazir, S. Srinivas, A.J. Chamkha, Investigation of cross-diffusion effects on Casson fluid flow in existence of variable fluid properties. Eur. Phys. J. Spec. Top. 228, 35–53 (2019)

    Article  Google Scholar 

  32. M.M. Rashidi, M.T. Akolade, M.M. Awad, A.O. Ajibade, I. Rashidi, Second law analysis of magnetized Casson nanofluid flow in squeezing geometry with porous medium and thermophysical influence. J. Taibah Univ. Sci. 15(1), 1013–1026 (2021)

    Article  Google Scholar 

  33. S. Nadeem, S.K. Ahmad, Mixed convection flow of hybrid nanoparticle along a Riga surface with Thomson and Troian slip condition. J. Therm. Anal. Calorim. (2021). https://doi.org/10.1007/s10973-020-09747-z

    Article  Google Scholar 

  34. M.T. Akolade, T.L. Oyekunle, H.O. Momoh, M.M. Awad, Thermophoretic movement, heat source, and sink influence on the Williamson fluid past a Riga surface with positive and negative Soret-Dufour mechanism. Heat Transf. (2022). https://doi.org/10.1002/htj.22497

    Article  Google Scholar 

  35. J.A. Gbadeyan, E.O. Titiloye, A.T. Adeosun, Effect of variable thermal conductivity and viscosity on Casson nanofluid flow with convective heating and velocity slip. Heliyon 6(1), e03076 (2020)

    Article  Google Scholar 

  36. M.T. Akolade, A.S. Idowu, A.T. Adeosun, Multislip and Soret-Dufour influence on nonlinear convection flow of MHD dissipative casson fluid over a slendering stretching sheet with generalized heat flux phenomenon. Heat Transf. 50(4), 3913–3933 (2021)

    Article  Google Scholar 

  37. M.T. Akolade, S.A. Agunbiade, T.L. Oyekunle, Onset modules of heat source and generalized Fourier’s law on Carreau fluid flow over an inclined nonlinear stretching sheet. Int. J. Model. Simul. (2022). https://doi.org/10.1080/02286203.2022.2151964

    Article  Google Scholar 

  38. E.O. Fatunmbi, A.T. Adeosun, Nonlinear radiative Eyring-Powell nanofluid flow along a vertical Riga plate with exponential varying viscosity and chemical reaction. Int. Commun. Heat Mass Transf. 119, 104913 (2020)

    Article  Google Scholar 

  39. M. Hamid, M. Usman, T. Zubair, R.U. Haq, W. Wang, Shape effects of MoS2 nanoparticles on rotating flow of nanofluid along a stretching surface with variable thermal conductivity: a Galerkin approach. Int. J. Heat Mass Transf. 124, 706–714 (2018)

    Article  Google Scholar 

  40. P.D. Ariel, The three-dimensional flow past a stretching sheet and the homotopy perturbation method. Comput. Math. Appl. 54(7–8), 920–925 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. T. Hayat, S.A. Shehzad, A. Alsaedi, Three-dimensional stretched flow of Jeffrey fluid with variable thermal conductivity and thermal radiation. Appl. Math. Mech. 34(7), 823–832 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors appreciate reviewers for their valuable suggestions and comments, which have helped improve the clarity of the manuscript.

Funding

This research received no funding.

Author information

Authors and Affiliations

Authors

Contributions

MTA, YOT, and JOO helped in conceptualization; MTA and YOT helped in methodology; YOT and TA worked in formal analysis and investigation; JOO, TA, and MAT contributed to writing—original draft preparation; and JOO, TA, MTA, YOT, and JOO contributed to writing—review and editing. All authors read and approve the manuscript.

Corresponding author

Correspondence to Mojeed T. Akolade.

Ethics declarations

Conflict of interest

There is no potential conflict of interest.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akolade, M.T., Olabode, J.O., Tijani, Y.O. et al. Bioconvection in Eyring–Powell fluid with composite features of variable viscosity and motile microorganism density. Eur. Phys. J. Plus 138, 736 (2023). https://doi.org/10.1140/epjp/s13360-023-04361-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04361-y

Navigation