Skip to main content
Log in

Invariance of cosmological number counts under disformal transformations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We investigate whether true physical observables associated with the measurements of large scale structure in the universe are frame-independent. In particular, we study if cosmological observables such as the galaxy number counts are invariant under the disformal transformations. In a previous work, it was shown that this frame-invariance holds true for the case of conformal transformations. In this work, we find that the invariance also holds true for the case of a simple disformal transformation. We further briefly comment on the disformal invariance of other cosmological observables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility Statement

There is no new data generated or associated with this work.

Notes

  1. Note that the disformal transformation is not just a simple field redefinition because it involves derivatives of the scalar field.

References

  1. C. Brans, R.H. Dicke, Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925–935 (1961). https://doi.org/10.1103/PhysRev.124.925

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. T.P. Sotiriou, V. Faraoni, f(R) theories of gravity. Rev. Mod. Phys. 82, 451–497 (2010). https://doi.org/10.1103/RevModPhys.82.451. arXiv:0805.1726 [gr-qc]

    Article  ADS  MATH  Google Scholar 

  3. T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Modified gravity and cosmology. Phys. Reports 513, 1–189 (2012). https://doi.org/10.1016/j.physrep.2012.01.001. arXiv:1106.2476 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Modified gravity theories on a nutshell: inflation, bounce and late-time evolution. Phys. Reports 692, 1–104 (2017). https://doi.org/10.1016/j.physrep.2017.06.001. arXiv:1705.11098 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. A. Iyonaga, T. Kobayashi, Distinguishing modified gravity with just two tensorial degrees of freedom from general relativity: black holes, cosmology, and matter coupling. Phys. Rev. D 104(12), 124020 (2021). https://doi.org/10.1103/PhysRevD.104.124020. arXiv:2109.10615 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  6. A. De Felice, R. Kase, S. Tsujikawa, Vainshtein mechanism in second-order scalar–tensor theories. Phys. Rev. D 85, 044059 (2012). https://doi.org/10.1103/PhysRevD.85.044059. arXiv:1111.5090 [gr-qc]

    Article  ADS  Google Scholar 

  7. R. Kimura, T. Kobayashi, K. Yamamoto, Vainshtein screening in a cosmological background in the most general second-order scalar–tensor theory. Phys. Rev. D 85, 024023 (2012). https://doi.org/10.1103/PhysRevD.85.024023. arXiv:1111.6749 [astro-ph.CO]

    Article  ADS  Google Scholar 

  8. T.S. Koivisto, D.F. Mota, M. Zumalacarregui, Screening modifications of gravity through disformally coupled fields. Phys. Rev. Lett. 109, 241102 (2012). https://doi.org/10.1103/PhysRevLett.109.241102. arXiv:1205.3167 [astro-ph.CO]

    Article  ADS  Google Scholar 

  9. P. Brax, Screening mechanisms in modified gravity. Class. Quantum Gravity 30, 214005 (2013). https://doi.org/10.1088/0264-9381/30/21/214005

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. P. Brax, S. Casas, H. Desmond, B. Elder, Testing screened modified gravity. Universe 8(1), 11 (2021). https://doi.org/10.3390/universe8010011. arXiv:2201.10817 [gr-qc]

    Article  ADS  Google Scholar 

  11. G.W. Horndeski, Second-order scalar–tensor field equations in a four-dimensional space. Int. J. Theor. Phys. 10, 363–384 (1974). https://doi.org/10.1007/BF01807638

    Article  MathSciNet  Google Scholar 

  12. V.K. Oikonomou, F.P. Fronimos, Reviving non-minimal Horndeski-like theories after GW170817: kinetic coupling corrected Einstein–Gauss–Bonnet inflation. Class. Quantum Gravity 38(3), 035013 (2021). https://doi.org/10.1088/1361-6382/abce47. arXiv:2006.05512 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. C. Deffayet, D.A. Steer, A formal introduction to Horndeski and Galileon theories and their generalizations. Class. Quantum Gravity 30, 214006 (2013). https://doi.org/10.1088/0264-9381/30/21/214006. arXiv:1307.2450 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. S. Chowdhury, K. Pal, K. Pal, T. Sarkar, Disformal transformations and the motion of a particle in semi-classical gravity. Eur. Phys. J. C 81(10), 946 (2021). https://doi.org/10.1140/epjc/s10052-021-09751-z. arXiv:2101.05745 [gr-qc]

    Article  ADS  Google Scholar 

  15. J.D. Bekenstein, The Relation between physical and gravitational geometry. Phys. Rev. D 48, 3641–3647 (1993). https://doi.org/10.1103/PhysRevD.48.3641. arXiv:gr-qc/9211017

    Article  ADS  MathSciNet  Google Scholar 

  16. F.T. Falciano, E. Goulart, A new symmetry of the relativistic wave equation. Class. Quantum Gravity 29, 085011 (2012). https://doi.org/10.1088/0264-9381/29/8/085011. arXiv:1112.1341 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. E. Goulart, F.T. Falciano, Disformal invariance of Maxwell’s field equations. Class. Quantum Gravity 30, 155020 (2013). https://doi.org/10.1088/0264-9381/30/15/155020. arXiv:1303.4350 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. M. Minamitsuji, Disformal transformation of cosmological perturbations. Phys. Lett. B 737, 139–150 (2014). https://doi.org/10.1016/j.physletb.2014.08.037. arXiv:1409.1566 [astro-ph.CO]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. S. Tsujikawa, Disformal invariance of cosmological perturbations in a generalized class of Horndeski theories. JCAP 04, 043 (2015). https://doi.org/10.1088/1475-7516/2015/04/043. arXiv:1412.6210 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  20. G. Domènech, A. Naruko, M. Sasaki, Cosmological disformal invariance. JCAP 10, 067 (2015). https://doi.org/10.1088/1475-7516/2015/10/067. arXiv:1505.00174 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  21. H. Motohashi, J. White, Disformal invariance of curvature perturbation. JCAP 02, 065 (2016). https://doi.org/10.1088/1475-7516/2016/02/065. arXiv:1504.00846 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  22. E. Babichev, C. Charmousis, A. Lehébel, Asymptotically flat black holes in Horndeski theory and beyond. JCAP 04, 027 (2017). https://doi.org/10.1088/1475-7516/2017/04/027. arXiv:1702.01938 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. J.B. Achour, H. Liu, S. Mukohyama, Hairy black holes in DHOST theories: exploring disformal transformation as a solution-generating method. JCAP 02, 023 (2020). https://doi.org/10.1088/1475-7516/2020/02/023. arXiv:1910.11017 [gr-qc]

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Zumalacarregui, T.S. Koivisto, D.F. Mota, P. Ruiz-Lapuente, Disformal scalar fields and the dark sector of the universe. JCAP 05, 038 (2010). https://doi.org/10.1088/1475-7516/2010/05/038. arXiv:1004.2684 [astro-ph.CO]

    Article  ADS  Google Scholar 

  25. J. Sakstein, Disformal theories of gravity: from the solar system to cosmology. JCAP 12, 012 (2014). https://doi.org/10.1088/1475-7516/2014/12/012. arXiv:1409.1734 [astro-ph.CO]

    Article  ADS  Google Scholar 

  26. P. Brax, C. Burrage, C. Englert, Disformal dark energy at colliders. Phys. Rev. D 92(4), 044036 (2015). https://doi.org/10.1103/PhysRevD.92.044036. arXiv:1506.04057 [hep-ph]

    Article  ADS  Google Scholar 

  27. C. Bruck, J. Morrice, Disformal couplings and the dark sector of the universe. JCAP 04, 036 (2015). https://doi.org/10.1088/1475-7516/2015/04/036. arXiv:1501.03073 [gr-qc]

    Article  MathSciNet  Google Scholar 

  28. P. Brax, K. Kaneta, Y. Mambrini, M. Pierre, Disformal dark matter. Phys. Rev. D 103(1), 015028 (2021). https://doi.org/10.1103/PhysRevD.103.015028. arXiv:2011.11647 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  29. D. Bettoni, S. Liberati, Disformal invariance of second order scalar–tensor theories: framing the Horndeski action. Phys. Rev. D 88, 084020 (2013). https://doi.org/10.1103/PhysRevD.88.084020. arXiv:1306.6724 [gr-qc]

    Article  ADS  Google Scholar 

  30. J. Gleyzes, D. Langlois, F. Piazza, F. Vernizzi, Exploring gravitational theories beyond Horndeski. JCAP 02, 018 (2015). https://doi.org/10.1088/1475-7516/2015/02/018. arXiv:1408.1952 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  31. J. Gleyzes, D. Langlois, F. Piazza, F. Vernizzi, Healthy theories beyond Horndeski. Phys. Rev. Lett. 114(21), 211101 (2015). https://doi.org/10.1103/PhysRevLett.114.211101. arXiv:1404.6495 [hep-th]

    Article  ADS  Google Scholar 

  32. M. Zumalacárregui, J. García-Bellido, Transforming gravity: from derivative couplings to matter to second-order scalar–tensor theories beyond the Horndeski Lagrangian. Phys. Rev. D 89, 064046 (2014). https://doi.org/10.1103/PhysRevD.89.064046. arXiv:1308.4685 [gr-qc]

    Article  ADS  Google Scholar 

  33. D. Langlois, K. Noui, Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability. JCAP 02, 034 (2016). https://doi.org/10.1088/1475-7516/2016/02/034. arXiv:1510.06930 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  34. J. Ben Achour, D. Langlois, K. Noui, Degenerate higher order scalar–tensor theories beyond Horndeski and disformal transformations. Phys. Rev. D 93(12), 124005 (2016). https://doi.org/10.1103/PhysRevD.93.124005. arXiv:1602.08398 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  35. M. Crisostomi, M. Hull, K. Koyama, G. Tasinato, Horndeski: beyond, or not beyond? JCAP 03, 038 (2016). https://doi.org/10.1088/1475-7516/2016/03/038. arXiv:1601.04658 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  36. T. Kobayashi, Horndeski theory and beyond: a review. Rept. Prog. Phys. 82(8), 086901 (2019). https://doi.org/10.1088/1361-6633/ab2429. arXiv:1901.07183 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  37. G.G.L. Nashed, W. El Hanafy, S.D. Odintsov, V.K. Oikonomou, Thermodynamical correspondence of \(f(R)\) gravity in the Jordan and Einstein frames. Int. J. Mod. Phys. D 29(13), 2050090 (2020). https://doi.org/10.1142/S021827182050090X. arXiv:1912.03897 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  38. S. Bahamonde, S.D. Odintsov, V.K. Oikonomou, M. Wright, Correspondence of \(F(R)\) Gravity Singularities in Jordan and Einstein Frames. Ann. Phys. 373, 96–114 (2016). https://doi.org/10.1016/j.aop.2016.06.020. arXiv:1603.05113 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. J. Francfort, B. Ghosh, R. Durrer, Cosmological number counts in Einstein and Jordan frames. JCAP 09, 071 (2019). https://doi.org/10.1088/1475-7516/2019/09/071. arXiv:1907.03606 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. C. Bonvin, R. Durrer, What galaxy surveys really measure. Phys. Rev. D 84, 063505 (2011). https://doi.org/10.1103/PhysRevD.84.063505. arXiv:1105.5280 [astro-ph.CO]

    Article  ADS  Google Scholar 

  41. M. Sasaki, The magnitude–redshift relation in a perturbed Friedmann universe. Mon. Not. R. Astron. Soc. 228, 653–669 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. J. Yoo, A.L. Fitzpatrick, M. Zaldarriaga, A new perspective on galaxy clustering as a cosmological probe: general relativistic effects. Phys. Rev. D 80, 083514 (2009). https://doi.org/10.1103/PhysRevD.80.083514. (rXiv:0907.0707 [astro-ph.CO])

    Article  ADS  Google Scholar 

  43. J. Yoo, E. Mitsou, N. Grimm, R. Durrer, A. Refregier, Cosmological information contents on the light-cone. JCAP 12, 015 (2019). https://doi.org/10.1088/1475-7516/2019/12/015. arXiv:1905.08262 [astro-ph.CO]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. D. Jeong, F. Schmidt, C.M. Hirata, Large-scale clustering of galaxies in general relativity. Phys. Rev. D 85, 023504 (2012). https://doi.org/10.1103/PhysRevD.85.023504. arXiv:1107.5427 [astro-ph.CO]

    Article  ADS  Google Scholar 

  45. F. Schmidt, D. Jeong, Cosmic rulers. Phys. Rev. D 86, 083527 (2012). https://doi.org/10.1103/PhysRevD.86.083527. arXiv:1204.3625 [astro-ph.CO]

    Article  ADS  Google Scholar 

  46. T. Chiba, F. Chibana, M. Yamaguchi, Disformal invariance of cosmological observables. JCAP 06, 003 (2020). https://doi.org/10.1088/1475-7516/2020/06/003. arXiv:2003.10633 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. M. Zumalacarregui, T.S. Koivisto, D.F. Mota, DBI Galileons in the Einstein frame: local gravity and cosmology. Phys. Rev. D 87, 083010 (2013). https://doi.org/10.1103/PhysRevD.87.083010. arXiv:1210.8016 [astro-ph.CO]

    Article  ADS  Google Scholar 

  48. A.L. Alinea, T. Kubota, Transformation of primordial cosmological perturbations under the general extended disformal transformation. Int. J. Mod. Phys. D 30(08), 2150057 (2021). https://doi.org/10.1142/S0218271821500577. arXiv:2005.12747 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Ruth Durrer for very useful discussions and comments on the draft. BG acknowledges partial financial support from the CV Raman Postdoctoral Fellowship and the DST-INSPIRE Faculty Fellowship DST/INSPIRE/04/2020/001534. JF acknowledges financial support from the Swiss National Science Foundation. RKJ wishes to acknowledge financial support from the new faculty seed start-up grant of the Indian Institute of Science, Bengaluru, India, Science and Engineering Research Board, Department of Science and Technology, Government of India, through the Core Research Grant CRG/2018/002200 and the Infosys Foundation, Bengaluru, India through the Infosys Young Investigator award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basundhara Ghosh.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, B., Francfort, J. & Jain, R.K. Invariance of cosmological number counts under disformal transformations. Eur. Phys. J. Plus 138, 660 (2023). https://doi.org/10.1140/epjp/s13360-023-04302-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04302-9

Navigation