Skip to main content
Log in

A density functional theory study on supercapacitor electrode applicability of ZnO/TiC heterostructure along with its vacancies, covacancies, codoped, alloys and coalloys

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The effects of vacancies, covacancies, codopants, alloyed and coalloyed on supercapacitor electrode applicability of ZnO/TiC heterostructure have been investigated using the density functional theory method and general gradient approximation. Doping and alloying have been done using Ga, Ge, V, Sc, N, S and Si elements. The structural and mechanical stability of all heterostructures has been confirmed by negative values of cohesive energy results. Moreover, the quantum capacitance and storage charge of the surface as a function of applied bias have been calculated and the results were in the range of supercapacitance for all heterostructures. In addition, the largest value of quantum capacitance belongs to coalloyed heterostructure NZnO/VTiC with a value of 242.06 \(\mu \)F/cm\(^{2}\) and at − 0.97 V and the largest value of storage charge of the surface at negative bias is for NZnO/ScTiC coalloyed heterostructure with a value of − 608.06 \(\mu \)C/cm\(^{2}\) at − 4.96 V. Furthermore, the electronic density of states results represents the metallic behavior of these heterostructures. These results exhibited a new insight into excellent supercapacitor electrodes in the base of environment-friendly materials.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data will be made available on request.]

References

  1. F. Haggstrom, J. Delsing, Iot energy storage - a forecast. Energy Harvest. Syst. 5, 43–51 (2018)

    Article  Google Scholar 

  2. Z. Tehrani, D.J. Thomas, T. Korochkina, C.O. Phillips, D. Lupo, S. Lehtimaki, J. O’Mahony, D.T. Gethin, Large-area printed supercapacitor technology for low-cost domestic green energy storage. Energy 118, 1313–1321 (2017)

    Article  Google Scholar 

  3. C. An, Y. Zhang, H. Guo, Y. Wang, Metal oxide-based supercapacitors: progress and prospectives. Nanoscale Adv. 1, 4644–4658 (2019)

    Article  ADS  Google Scholar 

  4. D. Yu, Q. Qian, L. Wei, W. Jiang, K. Goh, J. Wei, J. Zhang, Y. Chen, Emergence of fiber supercapacitors. Chem. Soc. Rev. 44, 647–662 (2015)

    Article  Google Scholar 

  5. S.R.C. Vivekchand, C.S. Rout, K.S. Subrahmanyam, A. Govindaraj, C.N.R. Rao, Graphene-based electrochemical supercapacitors. J. Chem. Sci. 120, 9–13 (2008)

    Article  Google Scholar 

  6. P. Sharma, V. Kumar, Current technology of supercapacitors: a review. JJ. Electron. Mater. 49, 3520–3532 (2020)

    Article  ADS  Google Scholar 

  7. M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna, C.P. Grey, B. Dunn, P. Simon, Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1, 651 (2016)

    Article  Google Scholar 

  8. L. Pu, J. Zhang, N.K.L. Jiresse, Y. Gao, H. Zhou, N. Naik, P. Gao, Z. Guo, N-doped mxene derived from chitosan for the highly effective electrochemical properties as supercapacitor. Adv. Compos. Hybrid Mater. 5, 356–369 (2022)

    Article  Google Scholar 

  9. P.K. Sharma, A. Arora, S.K. Tripathi, Review of supercapacitors: materials and devices. J. Energy Storage 21, 801–825 (2019)

    Article  Google Scholar 

  10. A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sources 157, 11–27 (2006)

    Article  ADS  Google Scholar 

  11. M. Mastragostino, F. Soavi, Strategies for high-performance supercapacitors for HEV. J. Power Sources 174, 89–93 (2007)

    Article  ADS  Google Scholar 

  12. J. Libich, J. Maca, J. Vondrak, O. vCech, M. Sedlavrikova, Supercapacitors: properties and applications. J. Energy Storage 17, 224–227 (2018)

    Article  Google Scholar 

  13. X. Li, B. Wei, Supercapacitors based on nanostructured carbon. Nano Energy 2, 159–173 (2013)

    Article  Google Scholar 

  14. A. Gonzalez, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: technologies and materials. Renew. Sustain. Energy Rev. 58, 1189–1206 (2016)

    Article  Google Scholar 

  15. E.S. Goda, A. Rehman, B. Pandit, A. Al-Shahat Eissa, S. Eun Hong, K. Ro Yoon, Al-doped co9s8 encapsulated by nitrogen-doped graphene for solid-state asymmetric supercapacitors. Chem. Eng. J. 428, 132470 (2022)

    Article  Google Scholar 

  16. A. Eftekhari, The mechanism of ultrafast supercapacitors. J. Mater. Chem. 6, 2866–2876 (2018)

    Article  Google Scholar 

  17. H. Du, M. Zhang, K. Liu, M. Parit, Z. Jiang, X. Zhang, B. Li, C. Si, Conductive pedot: Pss/cellulose nanofibril paper electrodes for flexible supercapacitors with superior areal capacitance and cycling stability. Chem. Eng. J. 428, 131994 (2022)

    Article  Google Scholar 

  18. R. Zhang, W. Zhang, M. Shi, H. Li, L. Ma, H. Niu, Morphology controllable synthesis of heteroatoms-doped carbon materials for high-performance flexible supercapacitor. Dyes Pigm. 199, 109968 (2022)

    Article  Google Scholar 

  19. Q. Zhou, W. Ju, Y. Yong, Q. Zhang, Y. Liu, J. Li, Effect of the n/p/s and transition-metal co-doping on the quantum capacitance of supercapacitor electrodes based on mono- and multilayer graphene. Carbon 170, 368–379 (2020)

    Article  Google Scholar 

  20. K.B. Bommegowda, D. Prasad, Design & implementation of power bank using supercapacitor. Int. J. Adv. Eng. Technol. 9, 1224–1228 (2019)

    Article  Google Scholar 

  21. M. Makar, L. Pravica, M. Kutija, Supercapacitor-based energy storage in elevators to improve energy efficiency of buildings. Appl. Sci. 12, 7184 (2022)

    Article  Google Scholar 

  22. C. Meng, O.Z. Gall, P.P. Irazoqui, A flexible super-capacitive solid-state power supply for miniature implantable medical devices. Biomed. Microdevices 15, 973–983 (2013)

    Article  Google Scholar 

  23. M. Yaseen, M. Khattak, M. Humayun, M. Usman, S. Shah, S. Bibi, B. Hasnain, S. Ahmad, A. Khan, N. Shah, A. Tahir, H. Ullah, A review of supercapacitors: materials design, modification, and applications. Energies 14, 7779 (2021)

    Article  Google Scholar 

  24. M.I.A. Abdel Maksoud, R.A. Fahim, A.E. Shalan, M. Abd Elkodous, S.O. Olojede, A.I. Osman, C. Farrell, A.H. Al-Muhtaseb, A.S. Awed, A.H. Ashour, D.W. Rooney, Advanced materials and technologies for supercapacitors used in energy conversion and storage: A review. Environ. Chem. Lett. 19, 375–439 (2021)

    Article  Google Scholar 

  25. B. Wang, C. Wang, Z. Wang, S. Ni, Y. Yang, P. Tian, Adaptive state of energy evaluation for supercapacitor in emergency power system of more-electric aircraft. Energy 263, 125632 (2023)

    Article  Google Scholar 

  26. M.D. Stoller, S. Murali, N. Quarles, Y. Zhu, J.R. Potts, X. Zhu, H. Ha, R.S. Ruoff, Activated graphene as a cathode material for li-ion hybrid supercapacitors. Phys. Chem. Chem. Phys. 14, 3388–3391 (2012)

    Article  Google Scholar 

  27. R. Liu, J. Wang, T. Sun, M. Wang, C. Wu, H. Zou, T. Song, X. Zhang, S. Lee, Z.L. Wang, B. Sun, Silicon nanowire/polymer hybrid solar cell-supercapacitor: a self-charging power unit with a total efficiency of 10.5. Nano Lett. 17, 4240–4247 (2017)

    Article  ADS  Google Scholar 

  28. K. Ren, H. Qin, H. Liu, Y. Chen, X. Liu, G. Zhang, Manipulating interfacial thermal conduction of 2d Janus heterostructure via a thermo-mechanical coupling. Adv. Funct. Mater. 32, 2110846 (2022)

    Article  Google Scholar 

  29. K. Ren, Y. Chen, H. Qin, W. Feng, G. Zhang, Graphene/biphenylene heterostructure: interfacial thermal conduction and thermal rectification. Appl. Phys. Lett. 121(082203), 2022 (2022)

    Google Scholar 

  30. Q. Du, Su. Li, L. Hou, G. Sun, M. Feng, X. Yin, Z. Ma, G. Shao, W. Gao, Rationally designed ultrathin Ni-Al layered double hydroxide and graphene heterostructure for high-performance asymmetric supercapacitor. J. Alloys Compd. 740, 1051–1059 (2018)

    Article  Google Scholar 

  31. Q. Liu, J. Ning, H. Guo, M. Xia, B. Wang, X. Feng, D. Wang, J. Zhang, Y. Hao, Tungsten-modulated molybdenum selenide/graphene heterostructure as an advanced electrode for all-solid-state supercapacitors. Nanomaterials (Basel, Switzerland) 11 (2021)

  32. H. Chen, S. Xiao, Y. Li, X. Ma, Y. Huang, Y. Wang, J.S. Chen, Z. Feng, Zno/cos heterostructured nanoflake arrays vertically grown on ni foam for high-rate supercapacitors. Chem Commun (Camb) 57, 10520–10523 (2021)

    Article  Google Scholar 

  33. F. Shirvani, A. Shokri, Electrical and optical properties of pbse/pbte heterostructures containing vacancies, doping, and alloys using first-principle calculations. Eur. Phys. J. Plus 138, 419 (2023)

    Article  Google Scholar 

  34. Q. Zhou, L. Wang, W. Ju, Y. Yong, Z. Dong, S. Chi, J. Yao, Exploring of the quantum capacitance of mos2/graphene heterostructures for supercapacitor electrodes. FlatChem 38, 100471 (2023)

    Article  Google Scholar 

  35. S. Kapse, B. Benny, P. Mandal, R. Thapa, Design principle of mos2/c heterostructure to enhance the quantum capacitance for supercapacitor application. J. Energy Storage 44, 103476 (2021)

    Article  Google Scholar 

  36. Q. Zhou, L. Wang, W. Ju, D. Su, J. Zhu, Y. Yong, S. Wu, Quantum capacitance of graphene-like/graphene heterostructures for supercapacitor electrodes. Electrochim. Acta 461, 142655 (2023)

    Article  Google Scholar 

  37. D. Mohapatra, S. Parida, S. Badrayyana, B.K. Singh, High performance flexible asymmetric cno-zno//zno supercapacitor with an operating voltage of 1.8 v in aqueous medium. Appl. Mater. Today 7, 212–221 (2017)

    Article  Google Scholar 

  38. J. Sahu, S. Kumar, F. Ahmed, P.A. Alvi, B. Dalela, D.M. Phase, M. Gupta, S. Dalela, Electrochemical and electronic structure properties of high-performance supercapacitor based on nd-doped zno nanoparticles. J. Energy Storage 59, 106499 (2023)

    Article  Google Scholar 

  39. Q. Fu, M. Yang, Z. Liu, H. Yang, F. She, X. Zhang, F. Xie, Y. Hu, J. Chen, Unveiling the promotion of intermediates transport kinetics on the n/s co-doping 3d structure titanium carbide aerogel for high-performance supercapacitors. J. Colloid Interface Sci. 618, 161–172 (2022)

    Article  ADS  Google Scholar 

  40. Y. Tian, W. Que, Y. Luo, C. Yang, X. Yin, L.B. Kong, Surface nitrogen-modified 2d titanium carbide (MXene) with high energy density for aqueous supercapacitor applications. J. Mater. Chem. 7, 5416–5425 (2019)

    Article  Google Scholar 

  41. W. Liu, J. Cheong, M. Ng, J.Y. Ying, Carbon nitride mediated synthesis of titanium-based electrodes for high-performance asymmetric supercapacitors. Nano Energy 112, 108489 (2023)

    Article  Google Scholar 

  42. H. Dong, J. Zhao, M. Peng, Y. Zhang, Design of Schottky barriers in ZNO–TiC interface and its application in high sensitivity detection of aniline. J. Mater. Sci.: Mater Electron. 33, 458–467 (2022)

    Google Scholar 

  43. S. Ishii, S.L. Shinde, T. Nagao, Nonmetallic materials for plasmonic hot carrier excitation. Adv. Opt. Mater. 7, 1800603 (2019)

    Article  Google Scholar 

  44. H. Li, J. Wen, S. Ding, J. Ding, Z. Song, C. Zhang, Z. Ge, X. Liu, R. Zhao, F. Li, Synergistic coupling of 0d–2d heterostructure from ZNO and Ti3C2T MXene-derived Tio2 for boosted No2 detection at room temperature. Nano Mater. Sci. 49, 1756 (2023)

    Google Scholar 

  45. S. Manyedi, W.W. Anku, E.M. Kiarii, P.P. Govender, Thermoelectric, electronic, and optical response of nanostructured al-doped ZNO@ 2d-tic composite. ChemistrySelect 5, 13144–13154 (2020)

    Article  Google Scholar 

  46. Y. Perdew Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation. Phys. Rev. B 33, 8800–8802 (1986)

    Article  ADS  Google Scholar 

  47. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  48. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, The siesta method for ab initio order- n materials simulation. J. Phys. Condens. Matter 14, 2745–2779 (2002)

    Article  ADS  Google Scholar 

  49. R. Hrytsak, P. Kempisty, E. Grzanka, M. Leszczynski, M. Sznajder, Modeling of the point defect migration across the ALN/GAN interfaces-ab initio study. Materials 15, 90 (2022)

    Article  Google Scholar 

  50. R.M. dos Santos, A.L. de Aguiar, J. Rocha Martins, R.B. dos Santos, D.S. Galvao, L.A.R. Junior, Structural and electronic properties of defective ALN/GAN hybrid nanostructures. Comput. Mater. Sci. 183, 109860 (2020)

    Article  Google Scholar 

  51. D.L. John, L.C. Castro, D.L. Pulfrey, Quantum capacitance in nanoscale device modeling. J. Appl. Phys. 96, 5180–5184 (2004)

    Article  ADS  Google Scholar 

  52. P. Hirunsit, M. Liangruksa, P. Khanchaitit, Electronic structures and quantum capacitance of monolayer and multilayer graphenes influenced by al, b, n and p doping, and monovacancy: theoretical study. Carbon 108, 7–20 (2016)

    Article  Google Scholar 

  53. Q. Xu, G. Yang, X. Fan, W. Zheng, Improving the quantum capacitance of graphene-based supercapacitors by the doping and co-doping: First-principles calculations. ACS omega 4, 13209–13217 (2019)

    Article  Google Scholar 

  54. A. Majdi, A. Kadhim Wadday, Z. Sabri Abbas, M.M. Kadhim, A. Mahdi Rheima, M. bbarzan, L. Haitham Al-attia, S.K. Hachim, M. Abdul Hadi, Quantum capacitance of iron metal doped boron carbide monolayer-based for supercapacitors electrodes: a DFT study. Inorg. Chem. Commun. 150, 110480 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Sheikh Bahaei National High Performance Computing Center (SBNHPCC) for providing computing facilities and time. SBNHPCC is supported by scientific and technological department of presidential office and Khajeh Nasiruddin Toosi University of Technology (K.N.TUT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Shirvani.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirvani, F., Jafari, M.R. & Shokri, A. A density functional theory study on supercapacitor electrode applicability of ZnO/TiC heterostructure along with its vacancies, covacancies, codoped, alloys and coalloys. Eur. Phys. J. Plus 138, 651 (2023). https://doi.org/10.1140/epjp/s13360-023-04293-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04293-7

Navigation