Skip to main content
Log in

Rotating convection in a higher gradient Navier–Stokes fluid

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We present a model for thermal convection in a horizontal layer rotating about a vertical axis, when the fluid is an incompressible Navier–Stokes fluid of Fried–Gurtin–Musesti type. This means the constitutive theory involves the second velocity gradient in addition to the velocity gradient itself. The governing equations then contain a hyperviscosity term which involves the bi-Laplacian operator. It is shown that the effect of rotation and the hyperviscosity effect both stabilize thermal convection when acting separately. However, when the rotation rate is sufficiently high the hyperviscosity can act to destabilize. This is an unexpected, counter intuitive effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data used are included here.

References

  1. A. Barletta, Thermal instability in a horizontal porous channel with horizontal through flow and symmetric wall heat fluxes. Transp. Porous Media 92, 419–437 (2012)

    Article  MathSciNet  Google Scholar 

  2. A. Barletta, Local energy balance, specific heats and the Oberbeck - Boussinesq approximation. Int. J. Heat Mass Transfer 270, 5266–5270 (2015)

    MATH  Google Scholar 

  3. A. Barletta, Routes to Absolute Instability in Porous Media (Springer, New York, 2019)

    Book  Google Scholar 

  4. A. Barletta, Spatially developing modes: the Darcy - Bénard problem revisited. Physics 3, 549–562 (2021)

    Article  ADS  Google Scholar 

  5. A. Barletta, The Boussinesq approximation for buoyant flows. Mech. Res. Comm. 124, 103939 (2022)

    Article  Google Scholar 

  6. A. Barletta, M. Celli, The Horton–Rogers–Lapwood problem for an inclined porous layer with permeable boundaries. Proc. Roy. Soc. London A 474, 20180021 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  7. A. Barletta, D.A.S. Rees, Local thermal non-equilibrium effects in the Darcy–Bénard instability with isoflux boundary conditions. Int. J. Heat Mass Transfer 55, 384–394 (2012)

    Article  MATH  Google Scholar 

  8. A. Barletta, M. Celli, D.A. Nield, Unstably stratified Darcy flow with impressed horizontal temperature gradient, viscous dissipation and asymmetric thermal boundary conditions. Int. J. Heat Mass Transfer 53, 1621–1627 (2010)

    Article  MATH  Google Scholar 

  9. A. Barletta, P.A. Tyvand, H.S. Nygard, Onset of thermal convection in a porous layer with mixed boundary conditions. J. Engng. Math. 91, 105–120 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Braun, N.L. Goddard, A. Libchaber, Exponential DNA replication by laminar convection. Phys. Rev. Lett. 91(15), 158103 (2003)

    Article  ADS  Google Scholar 

  11. W.P. Breugem, D.A.S. Rees, A derivation of the volume-averaged Boussinesq equations for flow in porous media with viscous dissipation. Trans. Porous Media 63, 1–12 (2006)

    Article  MathSciNet  Google Scholar 

  12. F. Capone, M. Gentile, Sharp stability results in LTNE rotating anisotropic porous layer. Int. J. Therm. Sci. 134, 661–664 (2018)

    Article  Google Scholar 

  13. F. Capone, R. De Luca, M. Gentile, Penetrative convection in rotating anisotropic bidispersive porous layers. Mech. Res. Comm. 110, 103601 (2020)

    Article  Google Scholar 

  14. F. Capone, R. De Luca, M. Gentile, Coriolis effect on thermal convection in a rotating bidispersive porous layer. Proc. Roy. Soc. London A 476, 20190875 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  15. F. Capone, M. Gentile, J.A. Gianfrani, Optimal stability thresholds in rotating fully anisotropic porous medium with LTNE. Transp. Porous Media 139, 185–201 (2021)

    Article  MathSciNet  Google Scholar 

  16. F. Capone, M. Gentile, G. Massa, The onset of thermal convection in anisotropic and rotating bidisperse porous media. ZAMP 72, 169 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  17. F. Capone, R. De Luca, G. Massa, The onset of double diffusive convection in a rotating bidisperse porous medium. Eur. Phys. J. Plus 137, 1034 (2022)

    Article  Google Scholar 

  18. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, New York, 1981)

    MATH  Google Scholar 

  19. M. Degiovanni, A. Marzocchi, S. Mastaglio, Regularity for the second grade Navier–Stokes equations in exterior domains, in Waves in Flows. ed. by T. Bodnar, G.P. Galdi, S. Necasova. pp. (Lecture Notes in Mathematical Fluid Mechanics, Birkhauser, Cham, 2021), pp.181–202

    Chapter  MATH  Google Scholar 

  20. V. Di Renzo, K. Wohletz, L. Civetta, R. Moretti, G. Orsi, P. Gasparini, The thermal regime of the Campi Flegrei magmatic system reconstructed through 3D numerical simulations. J. Volcanol. Geotherm. Res. 328, 210–221 (2016)

    Article  ADS  Google Scholar 

  21. J.J. Dongarra, B. Straughan, D.W. Walker, Chebyshev tau - QZ algorithm methods for calculating spectra of hydrodynamic stability problems. Appl. Numer. Math. 22, 399–435 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. F.Z. ElFatnani, D. Guyomar, F. Belhora, M. Mazroui, Y. Boughaleb, A. Hajjaji, A new concept to harvest thermal energy using pyroelectric effect and Rayleigh–Bénard convections. Eur. Phys. J. Plus 131, 252 (2016)

    Article  Google Scholar 

  23. F.Z. ElFatnani, M. Mazroui, D. Guyomar, Optimization of pyroelectric conversion of thermal energy through the PZT ceramic buzzer and natural convection. Eur. Phys. J. Plus 133, 519 (2018)

    Article  Google Scholar 

  24. E. Fried, M.E. Gurtin, Tractions, balances, and boundary conditions for nonsimple materials with application to flow at small length scales. Arch. Ration. Mech. Anal. 182, 513–554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. G.P. Galdi, B. Straughan, A nonlinear analysis of the stabilizing effect of rotation in the Bénard problem. Proc. Roy. Soc. London A 402, 257–283 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. G.G. Giusteri, A. Marzocchi, A. Musesti, Nonsimple isotropic incompressible linear fluids surrounding one-dimensional structures. Acta Mech. 217, 191–204 (2011)

    Article  MATH  Google Scholar 

  27. D.W. Hughes, M.R.E. Proctor, I.A. Eltayeb, Rapidly rotating Maxwell–Cattaneo convection. Phys. Rev. Fluids 7, 093502 (2022)

    Article  ADS  Google Scholar 

  28. K.M. Lakshmi, P.G. Siddheshwar, M.S. Muddamallappa, Study of rotating Bénard–Brinkman convection in Newtonian liquids and nanoliquids in enclosures. Int. J. Mech. Sci. 188, 105931 (2020)

    Article  Google Scholar 

  29. A. Mahajan, M. Arora, Convection in rotating magnetic nanofluids. Appl. Math. Comp. 219, 6284–6296 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Mahajan, H. Parashan, Linear and weakly nonlinear stability analysis on a rotating anisotropic ferrofluid layer. Phys. Fluids 32, 024101 (2020)

    Article  ADS  Google Scholar 

  31. A.V. Mohammad, D.A.S. Rees, The effect of conducting boundaries on the onset of convection in a porous layer which is heated from below by inclined heating. Trans. Por. Media 117, 189–206 (2017)

    Article  Google Scholar 

  32. C.B. Moler, G.W. Stewart, An algorithm for the generalized matrix eigenvalue problem \({A}x=\lambda {B}x\) (Univ. Texas at Austin, Technical report, 1971)

  33. A. Musesti, Isotropic linear constitutive relations for nonsimple fluids. Acta Mech. 204, 81–88 (2009)

    Article  MATH  Google Scholar 

  34. D.A.S. Rees, A. Mojtabi, The effect of conducting boundaries on weakly nonlinear Darcy–Bénard convection. Trans. Por. Media 88, 45–63 (2011)

    Article  Google Scholar 

  35. D.A.S. Rees, A. Mojtabi, The effect of conducting boundaries on Lapwood–Prats convection. Int. J. Heat Mass Transfer 65, 765–778 (2013)

    Article  Google Scholar 

  36. P.G. Siddheshwar, T.N. Sakshath, C. Siddabasappa, Effect of rotation on Brinkman–Bénard convection of a Newtonian nanoliquid using local thermal non-equilibrium model. Therm. Sci. Eng. Prog. 25, 100994 (2021)

    Article  Google Scholar 

  37. B. Straughan, A sharp nonlinear stability threshold in rotating porous convection. Proc. Roy. Soc. London A 457, 87–93 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. B. Straughan, The energy method, stability, and nonlinear convection, Appl, vol. 91, 2nd edn. (Math. Sci. Springer, New York, 2004)

  39. B. Straughan, Convection with local thermal non-equilibrium and microfluidic effects, Advances in Mechanics and Mathematics Series, vol. 32 (Springer, Cham, Switzerland, 2015)

    MATH  Google Scholar 

  40. B. Straughan, Thermal convection in a higher-gradient Navier–Stokes fluid. Eur. Phys. J. Plus 138, 60 (2023)

    Article  Google Scholar 

  41. P. Vadasz, Instability and convection in rotating porous media: a review. Fluids 4, 147 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by an Emeritus Fellowship of the Leverhulme Trust, EM-2019-022/9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Straughan.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Straughan, B. Rotating convection in a higher gradient Navier–Stokes fluid. Eur. Phys. J. Plus 138, 640 (2023). https://doi.org/10.1140/epjp/s13360-023-04284-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04284-8

Navigation