Skip to main content
Log in

Dynamics of spinning test particles around the Kerr–Newman–NUT black hole with quintessence in the Rastall gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This work is devoted to the study of motion of spinning test particles in the spacetime of the Kerr–Newman–NUT black hole with quintessence, in the Rastall gravity theory. We use the so-called Mathisson–Papapetrous–Dixon equation to investigate the dynamics of spinning test particles. We discuss the effect of the particle’s spin, s, and the spacetime parameters on the effective potential. Then, we focus on the innermost stable circular orbits (ISCOs) and show the dependence of the ISCO radius on the particle’s spin for different values of the metric parameters graphically. Then, we investigate the specific energy and the orbital angular momentum of the particle at the ISCO. Our results show that the black hole’s spin parameter a has an evident influence on the ISCO radius, followed by the quintessential parameter, \(\alpha\), the quintessence state parameter, \(\omega\), and the Rastall gravity parameter, \(\kappa \lambda\). We also discuss the constraint on the particle’s spin due to the superluminal bound for co-rotating and counter-rotating orbits, which changes depending on the values of the black hole’s parameters. Finally, we compare our results with the results for the Kerr black hole. We found that spacetime parameters increase the ISCO radius for co-rotating and counter-rotating circular orbits. Nevertheless, the energy at the ISCO is not affected strongly by the spacetime parameters for higher values of |s|.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data. (There is no observational data related to this article.)

References

  1. B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102

  2. K. Akiyama et al., (Event Horizon Telescope), Astrophys. J. Lett. 875, L1 (2019). https://doi.org/10.3847/2041-8213/ab0ec7. arXiv:1906.11238 [astro-ph.GA]

  3. K. Akiyama et al., (Event Horizon Telescope), Astrophys. J. Lett. 930, L12 (2022). https://doi.org/10.3847/2041-8213/ac6674

  4. M. Mathisson, Gen. Relativ. Gravit. 42, 1011 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Papapetrou, Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 209, 248 (1951)

    ADS  Google Scholar 

  6. G. Lukes-Gerakopoulos, Phys. Rev. D 96, 104023 (2017). https://doi.org/10.1103/PhysRevD.96.104023

    Article  ADS  MathSciNet  Google Scholar 

  7. W.G. Dixon, Proc. R. Soc. Lond. A. Math. Phys. Sci. 314, 499 (1970)

    ADS  Google Scholar 

  8. M. Zhang, J. Jiang, Phys. Lett. B 834, 137476 (2022). https://doi.org/10.1016/j.physletb.2022.137476

    Article  Google Scholar 

  9. M. Mohseni, H.R. Sepangi, Class. Quantum Gravity 17, 4615 (2000). https://doi.org/10.1088/0264-9381/17/22/302

    Article  ADS  Google Scholar 

  10. S. Kessari, D. Singh, R.W. Tucker, C. Wang, Class. Quantum Gravity 19, 4943 (2002). https://doi.org/10.1088/0264-9381/19/19/312

    Article  ADS  Google Scholar 

  11. P.I. Jefremov, O.Y. Tsupko, G.S. Bisnovatyi-Kogan, Phys. Rev. D 91, 124030 (2015). https://doi.org/10.1103/PhysRevD.91.124030

    Article  ADS  MathSciNet  Google Scholar 

  12. D. Bini, G. Gemelli, R. Ruffini, Phys. Rev. D 61, 064013 (2000). https://doi.org/10.1103/PhysRevD.61.064013

    Article  ADS  MathSciNet  Google Scholar 

  13. O. Semerák, T. Zellerin, M. Žàček, Mon. Not. R. Astron. Soc. 308, 691 (1999). https://doi.org/10.1046/j.1365-8711.1999.02748.x

    Article  ADS  Google Scholar 

  14. Y.-P. Zhang, S.-W. Wei, W.-D. Guo, T.-T. Sui, Y.-X. Liu, Phys. Rev. D 97, 84056 (2018). https://doi.org/10.1103/PhysRevD.97.084056

    Article  ADS  MathSciNet  Google Scholar 

  15. F. Abdulxamidov, C.A. Benavides-Gallego, W.-B. Han, J. Rayimbaev, A. Abdujabbarov, Phys. Rev. D 106, 024012 (2022). https://doi.org/10.1103/PhysRevD.106.024012

    Article  ADS  Google Scholar 

  16. C.A. Benavides-Gallego, W.-B. Han, D. Malafarina, B. Ahmedov, A. Abdujabbarov, Phys. Rev. D 104, 084024 (2021). https://doi.org/10.1103/PhysRevD.104.084024

    Article  ADS  Google Scholar 

  17. Y.-P. Zhang, S.-W. Wei, Y.-X. Liu, Universe (2020). https://doi.org/10.3390/universe6080103

    Article  Google Scholar 

  18. P. Rastall, Phys. Rev. D 6, 3357 (1972). https://doi.org/10.1103/PhysRevD.6.3357

    Article  ADS  MathSciNet  Google Scholar 

  19. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006). https://doi.org/10.1142/S021827180600942X. arXiv:hep-th/0603057

    Article  ADS  Google Scholar 

  20. T. Chiba, T. Okabe, M. Yamaguchi, Phys. Rev. D 62, 023511 (2000). https://doi.org/10.1103/PhysRevD.62.023511

    Article  ADS  Google Scholar 

  21. C. Schimd, I. Tereno, J.-P. Uzan, Y. Mellier, L. vanWaerbeke, E. Semboloni, H. Hoekstra, L. Fu, A. Riazuelo, Astron. Astrophys. 463, 405 (2007)

    Article  ADS  Google Scholar 

  22. V.V. Kiselev, Class. Quantum Gravity 20, 1187 (2003). https://doi.org/10.1088/0264-9381/20/6/310. arXiv:gr-qc/0210040

    Article  ADS  Google Scholar 

  23. B. Toshmatov, Z. Stuchlik, B. Ahmedov, Eur. Phys. J. Plus (2015). https://doi.org/10.1140/epjp/i2017-11373-4

    Article  Google Scholar 

  24. B. Majeed, M. Jamil, P. Pradhan, Adv. High Energy Phys. 2015, 124910 (2015). https://doi.org/10.1155/2015/124910. arXiv:1508.04761 [gr-qc]

    Article  Google Scholar 

  25. K. Ghaderi, B. Malakolkalami, Astrophys. Space Sci. 361, 161 (2016). https://doi.org/10.1007/s10509-016-2744-x

    Article  ADS  Google Scholar 

  26. B. Narzilloev, I. Hussain, A. Abdujabbarov, B. Ahmedov, C. Bambi, Eur. Phys. J. Plus 136, 1032 (2021). https://doi.org/10.1140/epjp/s13360-021-02039-x. arXiv:2110.01772 [gr-qc]

    Article  Google Scholar 

  27. B. Narzilloev, I. Hussain, A. Abdujabbarov, B. Ahmedov, Eur. Phys. J. Plus 137, 645 (2022). https://doi.org/10.1140/epjp/s13360-022-02872-8. arXiv:2205.11760 [gr-qc]

    Article  Google Scholar 

  28. T. Mirzaev, S. Li, B. Narzilloev, I. Hussain, A. Abdujabbarov, B. Ahmedov, Eur. Phys. J. Plus 138, 47 (2023). https://doi.org/10.1140/epjp/s13360-022-03632-4

    Article  Google Scholar 

  29. D.J. Gogoi, Y. Sekhmani, D. Kalita, N.J. Gogoi, J. Bora, Fortschr. Phys. (2023). https://doi.org/10.1002/prop.202300010

    Article  Google Scholar 

  30. M. Visser, Phys. Lett. B 782, 83 (2018)

    Article  ADS  Google Scholar 

  31. F. Darabi, H. Moradpour, I. Licata, Y. Heydarzade, C. Corda, Eur. Phys. J. C 78, 25 (2018). https://doi.org/10.1140/epjc/s10052-017-5502-5. arXiv:1712.09307 [gr-qc]

    Article  ADS  Google Scholar 

  32. T.R. Caramês, M.H. Daouda, J.C. Fabris, A.M. Oliveira, O.F. Piattella, V. Strokov, Eur. Phys. J. C 74, 3145 (2014)

    Article  ADS  Google Scholar 

  33. H. Moradpour, Y. Heydarzade, F. Darabi, I.G. Salako, Eur. Phys. J. C 77, 259 (2017). https://doi.org/10.1140/epjc/s10052-017-4811-z. arXiv:1704.02458 [gr-qc]

    Article  ADS  Google Scholar 

  34. M.F. Shamir, I. Yaqoot, G. Mustafa, New Astron. 89, 101624 (2021)

    Article  Google Scholar 

  35. Y. Heydarzade, H. Moradpour, F. Darabi, Can. J. Phys. 95, 1253 (2017). https://doi.org/10.1139/cjp-2017-0254. arXiv:1610.03881 [gr-qc]

    Article  ADS  Google Scholar 

  36. F.M. da Silva, L.C.N. Santos, C.C. Barros, Class. Quantum Gravity 38, 165011 (2021). https://doi.org/10.1088/1361-6382/ac129d. arXiv:2010.00086 [astroph. HE]

    Article  ADS  Google Scholar 

  37. M.R. Shahzad, G. Abbas, Astrophys. Space Sci. 365, 147 (2020). https://doi.org/10.1007/s10509-020-03861-y

    Article  ADS  Google Scholar 

  38. G. Abbas, M. Shahzad, Chin. J. Phys. 63, 1 (2020)

    Article  Google Scholar 

  39. M.F. Sakti, A. Suroso, F.P. Zen, Ann. Phys. 413, 168062 (2020). https://doi.org/10.1016/j.aop.2019.168062

    Article  Google Scholar 

  40. R. Kumar, S.G. Ghosh, Eur. Phys. J. C 78, 1 (2018)

    Article  Google Scholar 

  41. M.F.A.R. Sakti, A. Suroso, A. Sulaksono, F.P. Zen, Phys. Dark Univ. 35, 100974 (2022). https://doi.org/10.1016/j.dark.2022.100974. arXiv:2110.03525 [hep-th]

    Article  Google Scholar 

  42. J. Rayimbaev, B. Narzilloev, A. Abdujabbarov, B. Ahmedov, Galaxies (2021). https://doi.org/10.3390/galaxies9040071

    Article  Google Scholar 

  43. B. Narzilloev, J. Rayimbaev, A. Abdujabbarov, B. Ahmedov, Galaxies (2021). https://doi.org/10.3390/galaxies9030063

    Article  Google Scholar 

  44. B. Narzilloev, B. Ahmedov, Symmetry (2022). https://doi.org/10.3390/sym14091765

    Article  Google Scholar 

  45. N. Kurbonov, J. Rayimbaev, M. Alloqulov, M. Zahid, F. Abdulxamidov, A. Abdujabbarov, M. Kurbanova, Eur. Phys. J. C 83, 506 (2023). https://doi.org/10.1140/epjc/s10052-023-11691-9

    Article  ADS  Google Scholar 

  46. B. Narzilloev, B. Ahmedov, New Astron. 98, 101922 (2023). https://doi.org/10.1016/j.newast.2022.101922

    Article  Google Scholar 

  47. B. Narzilloev, A. Abdujabbarov, A. Hakimov, Int. J. Mod. Phys. A 37, 2250144 (2022). https://doi.org/10.1142/S0217751X22501445

    Article  ADS  Google Scholar 

  48. B. Narzilloev, B. Ahmedov, Symmetry 15, 293 (2023). https://doi.org/10.3390/sym15020293

    Article  ADS  Google Scholar 

  49. J. M. Ladino, C. A. Benavides-Gallego, E. Larra.naga, J. Rayimbaev, F. Abdulxamidov (2023). arXiv:2305.15350 [gr-qc]

  50. B. Narzilloev, B. Ahmedov, Int. J. Mod. Phys. A 38, 2350026 (2023). https://doi.org/10.1142/S0217751X23500264

    Article  ADS  Google Scholar 

  51. J. Rayimbaev, A. Abdujabbarov, F. Abdulkhamidov, V. Khamidov, S. Djumanov, J. Toshov, S. Inoyatov, Eur. Phys. J. C 82, 1110 (2022). https://doi.org/10.1140/epjc/s10052-022-11080-8

    Article  ADS  Google Scholar 

  52. J. Rayimbaev, D. Bardiev, F. Abdulxamidov, A. Abdujabbarov, B. Ahmedov, Universe 8, 549 (2022). https://doi.org/10.3390/universe8100549

    Article  ADS  Google Scholar 

  53. J. Rayimbaev, S. Shaymatov, F. Abdulxamidov, S. Ahmedov, D. Begmatova, Universe (2023). https://doi.org/10.3390/universe9030135

    Article  Google Scholar 

  54. J. Casanellas, P. Pani, I. Lopes, V. Cardoso, Astrophys. J. 745, 15 (2011)

    Article  ADS  Google Scholar 

  55. R. Li, J. Wang, Z. Xu, X. Guo, Mon. Not. R. Astron. Soc. 486, 2407 (2019)

    Article  ADS  Google Scholar 

  56. Z. Xu, Y. Liao, J. Wang, Int. J. Mod. Phys. A 34, 1950185 (2019). https://doi.org/10.1142/S0217751X19501859

    Article  ADS  Google Scholar 

  57. E. Corinaldesi, A. Papapetrou, Proc. R. Soc. Lond. A 209, 259 (1951). https://doi.org/10.1098/rspa.1951.0201

    Article  ADS  Google Scholar 

  58. B. Tulzcyjew, Acta Phys. Pol. 18, 393 (1959)

    Google Scholar 

  59. W. BeiglböLock, Commun. Math. Phys. 5, 106 (1967). https://link.springer.com/article/10.1007/BF01646841

    Article  ADS  Google Scholar 

  60. B. Tulzcyjew, W. Tulzcyjew, Recent Developments in General Relativity, Pergamon Press, New York (1962)

  61. W.G. Dixon, Il Nuovo Cimento 34, 317 (1964). https://doi.org/10.1007/BF02734579

    Article  ADS  Google Scholar 

  62. W.G. Dixon, Proc. R. Soc. Lond. A 314, 499 (1970). https://doi.org/10.1098/rspa.1970.0020

    Article  ADS  Google Scholar 

  63. W.G. Dixon, Proc. R. Soc. Lond. A 319, 509 (1970). https://doi.org/10.1098/rspa.1970.0191

    Article  ADS  Google Scholar 

  64. J. Ehlers, E. Rudolph, Gen. Relat. Gravit. 8, 197 (1977). https://doi.org/10.1007/BF00763547

    Article  ADS  Google Scholar 

  65. A.A. Deriglazov, W. Guzmán Ramírez, Adv. Math. Phys (2017). https://doi.org/10.1155/2017/7397159. arXiv:1710.07135 [gr-qc]

    Article  Google Scholar 

  66. A.A. Deriglazov, W. Guzmán Ramírez, Phys. Lett. B 779, 210 (2018). https://doi.org/10.1016/j.physletb.2018.01.063. arXiv:1802.08079 [gr-qc]

    Article  ADS  Google Scholar 

  67. M. Saijo, K.-I. Maeda, M. Shibata, Y. Mino, Phys. Rev. D 58, 064005 (1998)

    Article  ADS  Google Scholar 

  68. C.A. Benavides-Gallego, W.-B. Han, D. Malafarina, B. Ahmedov, A. Abdujabbarov, Phys. Rev. D 104, 084024 (2021). https://doi.org/10.1103/PhysRevD.104.084024. arXiv:2107.07998 [gr-qc]

    Article  ADS  Google Scholar 

  69. F. Abdulxamidov, C.A. Benavides-Gallego, W.-B. Han, J. Rayimbaev, A. Abdujabbarov, Phys. Rev. D 106, 024012 (2022). https://doi.org/10.1103/PhysRevD.106.024012. arXiv:2205.11727 [gr-qc]

    Article  ADS  Google Scholar 

  70. C. Conde, C. Galvis, E. Larrañaga, Phys. Rev. D 99, 104059 (2019). https://doi.org/10.1103/PhysRevD.99.104059. arXiv:1905.01323 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  71. B. Toshmatov, D. Malafarina, Phys. Rev. D 100, 104052 (2019). https://doi.org/10.1103/PhysRevD.100.104052. arXiv:1910.11565 [gr-qc]

    Article  ADS  Google Scholar 

  72. S.A. Hojman, F.A. Asenjo, Class. Quantum Gravity 30, 025008 (2013). https://doi.org/10.1088/0264-9381/30/2/025008. arXiv:1203.5008 [physics.gen-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

F.A. is supported by the Uzbekistan Agency for Innovative Development Grant F-FA-2021-510. C.A.B.G. acknowledge the support of the Ministry of Science and Technology of China (Grant No. 2020SKA0110201) and the National Science Foundation of China (Grants No. 11835009). A.A. and B.A. acknowledge the support of the Uzbekistan Agency for Innovative Development Grants F-FA-2021-432, F-FA-2021-510, MRB-2021-527 and the Abdus Salam International Centre for Theoretical Physics under the Grant No. OEA-NT-01. Haiguang Xu is supported by the Ministry of Science and Technology of China (Grant No. 2020SKA0110201) and the National Science Foundation of China (Grant No. 11835009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrar Hussain.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulxamidov, F., Benavides-Gallego, C.A., Narzilloev, B. et al. Dynamics of spinning test particles around the Kerr–Newman–NUT black hole with quintessence in the Rastall gravity. Eur. Phys. J. Plus 138, 635 (2023). https://doi.org/10.1140/epjp/s13360-023-04283-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04283-9

Navigation