Skip to main content
Log in

The influence of the electric and magnetic fields on donor impurity electronic states and optical absorption coefficients in a core/shell GaAs/Al\(_{0.33}\)Ga\(_{0.67}\)As ellipsoidal quantum dot

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The lowest five energies levels (ELs) and optical absorption coefficient (OAC) of confined donor in a core/shell ellipsoidal quantum dot were theoretically investigated under the impacts of applied electric and magnetic fields. The energy spectrum and wave functions are generated by solving the Schrodinger equation with the finite element method. External magnetic or electric fields and their directions have a considerable effect on the energy levels and dipole matrix element. The computations revealed that changing the directions of the external fields causes a change in the energy levels, implying that OAC fluctuations of these transitions are closely tied to magnetic and electric field angles. We also, demonstrated that changes in light polarization cause blue- or red-shifts in the intersubband OAC spectra, depending on the orientations of the two external fields and the existence or absence of an impurity (k = 0, 1). Furthermore, in all cases, the insertion of a on-center impurity somewhat enhances the OAC peaks and shifts the resonant peaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with corresponding author].

References

  1. R.K. Singha, S. Manna, R. Bar, S. Das, S.K. Ray, Surface potential, charging and local current transport of individual Ge quantum dots grown by molecular beam epitaxy. Appl. Surf. Sci. 407, 418–426 (2017). https://doi.org/10.1016/j.apsusc.2017.02.212

    Article  ADS  Google Scholar 

  2. X. Yan, F. Tang, Y. Wu, B. Li, X. Zhang, X. Ren, Growth of isolated InAs quantum dots on core-shell GaAs/InP nanowire sidewalls by MOCVD. J. Cryst. Growth 468, 185–187 (2017). https://doi.org/10.1016/j.jcrysgro.2016.11.085

    Article  ADS  Google Scholar 

  3. I.I. Maronchuk, D.D. Sanikovich, A.A. Velchenko, Photoluminescence of gallium phosphide-based nanostructures with germanium quantum dots. Grown by liquid-phase epitaxy. J. Appl. Spectrosc. 84, 880–883 (2017). https://doi.org/10.1007/s10812-017-0559-3

    Article  ADS  Google Scholar 

  4. D.J. Mowbray, M.S. Skolnick, New physics and devices based on self-assembled semiconductor quantum dots. J. Phys. D Appl. Phys. 38, 2059–2076 (2005)

    Article  ADS  Google Scholar 

  5. M. Xing, Y. Zhang, Q. Shen, R. Wang, Temperature dependent photovoltaic performance of TiO2/PbS heterojunction quantum dot solar cells. Sol. Energy 195, 1–5 (2020). https://doi.org/10.1016/j.solener.2019.11.010

    Article  ADS  Google Scholar 

  6. D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F.H.L. Koppens, G. Konstantatos, Hybrid 2D–0D MoS2-PbS quantum dot photodetectors. Adv. Mater. 27, 176–180 (2015). https://doi.org/10.1002/adma.201402471

    Article  Google Scholar 

  7. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S.N. Elliott, A. Sobiesierski, A.J. Seeds, I. Ross, P.M. Smowton, H. Liu, Electrically pumped continuous-wave III-V quantum dot lasers on silicon. Nat. Photonics 10, 307–311 (2016). https://doi.org/10.1038/nphoton.2016.21

    Article  ADS  Google Scholar 

  8. D. Press, K. de Greve, P.L. McMahon, T.D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, Ultrafast optical spin echo in a single quantum dot. Nat. Photonics 4, 367–370 (2010)

    Article  ADS  Google Scholar 

  9. C. Heyn, C.A. Duque, Donor impurity related optical and electronic properties of cylindrical GaAs-AlxGa1–xAs quantum dots under tilted electric and magnetic fields. Sci. Rep. 10, 456 (2020). https://doi.org/10.1038/s41598-020-65862-9

    Article  Google Scholar 

  10. M. Jaouane, A. Sali, A. Fakkahi, R. Arraoui, F. Ungan, The effects of temperature and pressure on the optical properties of a donor impurity in (In, Ga)N/GaN multilayer cylindrical quantum dots. Micro Nanostruct. (2022). https://doi.org/10.1016/j.spmi.2021.107146

    Article  Google Scholar 

  11. C. Dane, H. Akbas, S. Minez, A. Guleroglu, Electric field effect in a GaAs/AlAs spherical quantum dot. Phys. E Low Dimens. Syst. Nanostruct. 41, 278–281 (2008). https://doi.org/10.1016/j.physe.2008.07.016

    Article  ADS  Google Scholar 

  12. A. Fakkahi, A. Sali, M. Jaouane, R. Arraoui, A. Ed-Dahmouny, Study of photoionization cross section and binding energy of shallow donor impurity in multilayered spherical quantum dot. Phys. E Low Dimens. Syst. Nanostruct. (2022). https://doi.org/10.1016/j.physe.2022.115351

    Article  Google Scholar 

  13. A. Sali, H. Satori, The combined effect of pressure and temperature on the impurity binding energy in a cubic quantum dot using the FEM simulation. Superlattices Microstruct. 69, 38–52 (2014). https://doi.org/10.1016/j.spmi.2014.01.011

    Article  ADS  Google Scholar 

  14. R. Arraoui, A. Sali, A. Ed-Dahmouny, M. Jaouane, A. Fakkahi, Polaronic mass and non-parabolicity effects on the photoionization cross section of an impurity in a double quantum dot. Superlattices Microstruct. (2021). https://doi.org/10.1016/j.spmi.2021.107049

    Article  Google Scholar 

  15. C. Heyn, A. Radu, J.A. Vinasco, D. Laroze, R.L. Restrepo, V. Tulupenko, N.N. Hieu, H.V. Phuc, M.E. Mora-Ramos, J.H. Ojeda, A.L. Morales, C.A. Duque, Exciton states in conical quantum dots under applied electric and magnetic fields. Opt. Laser Technol. (2021). https://doi.org/10.1016/j.optlastec.2021.106953

    Article  Google Scholar 

  16. E. Iqraoun, A. Sali, A. Rezzouk, E. Feddi, F. Dujardin, M.E. Mora-Ramos, C.A. Duque, Donor impurity-related photoionization cross section in GaAs cone-like quantum dots under applied electric field. Philos. Mag. 97, 1445–1463 (2017). https://doi.org/10.1080/14786435.2017.1302613

    Article  ADS  Google Scholar 

  17. J.A. Osorio, D. Caicedo-Paredes, J.A. Vinasco, A.L. Morales, A. Radu, R.L. Restrepo, J.C. Martínez-Orozco, A. Tiutiunnyk, D. Laroze, N.N. Hieu, H.V. Phuc, M.E. Mora-Ramos, C.A. Duque, Pyramidal core-shell quantum dot under applied electric and magnetic fields. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-65442-x

    Article  Google Scholar 

  18. D. Makhlouf, M. Choubani, F. Saidi, H. Maaref, Modeling of the second harmonic generation in a lens-shaped InAs/GaAs quantum core/shell dot under temperature, pressure and applied electric field effects. Results Phys. (2020). https://doi.org/10.1016/j.rinp.2020.102961

    Article  Google Scholar 

  19. I.-H. Lee, Y.-H. Kim, K.-H. Ahn, Electronic structure of ellipsoidally deformed quantum dots. J. Phys. Condens. Matter 13, 1987–1993 (2001). https://doi.org/10.1088/0953-8984/13/9/321

    Article  ADS  Google Scholar 

  20. D.A. Baghdasaryan, D.B. Hayrapetyan, E.M. Kazaryan, Prolate spheroidal quantum dot: electronic states, direct interband light absorption and electron dipole moment. Phys. B Condens. Matter 479, 85–89 (2015). https://doi.org/10.1016/j.physb.2015.09.043

    Article  ADS  Google Scholar 

  21. A. Halder, V.V. Kresin, Energies and densities of electrons confined in elliptical and ellipsoidal quantum dots. J. Phys. Condens. Matter 28, 3953 (2016). https://doi.org/10.1088/0953-8984/28/39/395302

    Article  Google Scholar 

  22. L.J. Lauhon, M.S. Gudlksen, D. Wang, C.M. Lieber, Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420, 57–61 (2002). https://doi.org/10.1038/nature01141

    Article  ADS  Google Scholar 

  23. J.H. Blokland, M. Bozkurt, J.M. Ulloa, D. Reuter, A.D. Wieck, P.M. Koenraad, P.C.M. Christianen, J.C. Maan, Ellipsoidal InAs quantum dots observed by cross-sectional scanning tunneling microscopy. Appl. Phys. Lett. 94, 3070 (2009). https://doi.org/10.1063/1.3072366

    Article  Google Scholar 

  24. A. Ed-Dahmouny, A. Sali, N. Es-Sbai, R. Arraoui, C.A. Duque, The impact of hydrostatic pressure and temperature on the binding energy, linear, third-order nonlinear, and total optical absorption coefficients and refractive index changes of a hydrogenic donor impurity confined in GaAs/AlxGa1–xAs double quantum dots. Eur. Phys. J. Plus. (2022). https://doi.org/10.1140/epjp/s13360-022-03002-0

    Article  Google Scholar 

  25. L. Belamkadem, O. Mommadi, J.A. Vinasco, D. Laroze, A. El-Moussaouy, M. Chnafi, C.A. Duque, Electronic properties and hydrogenic impurity binding energy of a new variant quantum dot. Phys. E Low Dimens. Syst. Nanostruct. 129, 1016 (2021). https://doi.org/10.1016/j.physe.2021.114642

    Article  Google Scholar 

  26. G. Bastard, Hydrogenic impurity states in a quantum well: a simple model. Phys. Rev. B 24, 4714–4722 (1981)

    Article  ADS  Google Scholar 

  27. A. Ed-Dahmouny, A. Sali, N. Es-Sbai, R. Arraoui, M. Jaouane, A. Fakkahi, K. El-Bakkari, C. A. Duque, Combined effects of hydrostatic pressure and electric field on the donor binding energy, polarizability, and photoionization cross-section in double GaAs/GaAlAs quantum dots. Eur. Phys. J. B. (2022). https://doi.org/10.1140/epjb/s10051-022-00400-2

    Article  Google Scholar 

  28. H. Satori, A. Sali, The finite element simulation for the shallow impurity in quantum dots. Phys. E Low Dimens. Syst. Nanostruct. 48, 171–175 (2013). https://doi.org/10.1016/j.physe.2012.12.010

    Article  ADS  Google Scholar 

  29. M. el Haouari, A. Talbi, E. Feddi, H. el Ghazi, A. Oukerroum, F. Dujardin, Linear and nonlinear optical properties of a single dopant in strained AlAs/GaAs spherical core/shell quantum dots. Opt. Commun. 383, 231–237 (2017). https://doi.org/10.1016/j.optcom.2016.09.019

    Article  ADS  Google Scholar 

  30. D. Makhlouf, M. Choubani, F. Saidi, H. Maaref, Applied electric and magnetic fields effects on the nonlinear optical rectification and the carrier’s transition lifetime in InAs/GaAs core/shell quantum dot. Mater. Chem. Phys. (2021). https://doi.org/10.1016/j.matchemphys.2021.124660

    Article  Google Scholar 

  31. A. Ibral, A. Zouitine, E.M. Assaid, H. el Achouby, E.M. Feddi, F. Dujardin, Polarization effects on spectra of spherical core/shell nanostructures: perturbation theory against finite difference approach. Phys. B Condens. Matter 458, 73–84 (2015). https://doi.org/10.1016/j.physb.2014.11.009

    Article  ADS  Google Scholar 

  32. V.A. Holovatsky, M.V. Chubrei, C.A. Duque, Core-shell type-II spherical quantum dot under externally applied electric field. Thin Solid Films (2022). https://doi.org/10.1016/j.tsf.2022.139142

    Article  Google Scholar 

  33. L. Shi, Z.W. Yan, Stark shift and photoionization cross section of on-center and off-center donor impurity in a core/shell ellipsoidal quantum dot. Phys. E Low Dimens. Syst. Nanostruct. 98, 111–117 (2018). https://doi.org/10.1016/j.physe.2017.12.034

    Article  ADS  Google Scholar 

  34. G. Bastard, E.E. Mendez, L.L. Chang, L. Esaki, Variational calculations on a quantum well in an electric field. Phys. Rev. B 28, 3241–3245 (1983). https://doi.org/10.1103/PhysRevB.28.3241

    Article  ADS  Google Scholar 

  35. I.D. Mikhailov, F.J. Betancur, R.A. Escorcia, J. Sierra-Ortega, Shallow donors in semiconductor heterostructures: fractal dimension approach and the variational principle. Phys. Rev. B Condens. Matter Mater. Phys. 67, 9 (2003). https://doi.org/10.1103/PhysRevB.67.115317

    Article  Google Scholar 

  36. F. Durán-Flórez, L.C. Caicedo, J.E. Gonzalez, Variational method for calculating the binding energy of the base state of an impurity D- centered on a quantum dot of GaAs-Ga1–xAlxAs. J. Phys. Conf. Ser. (2018). https://doi.org/10.1088/1742-6596/1002/1/012007

    Article  Google Scholar 

  37. L.M. Burileanu, Photoionization cross-section of donor impurity in spherical quantum dots under electric and intense laser fields. J. Lumin. 145, 684–689 (2014). https://doi.org/10.1016/j.jlumin.2013.08.043

    Article  Google Scholar 

  38. A. Sali, A. Rezzouk, N. Es-Sbai, M.O. Jamil, The simultaneous effects of the wetting layer, intense laser and the conduction band non-parabolicity on the donor binding energy in a InAs/GaAs conical quantum dot using the numerical FEM. Indian J. Pure Appl. Phys. 57, 483–491 (2019). https://doi.org/10.56042/ijpap.v57i7.20359

    Article  Google Scholar 

  39. A. Sali, J. Kharbach, A. Rezzouk, M.O. Jamil, The effects of polaronic mass and conduction band non-parabolicity on a donor binding energy under the simultaneous effect of pressure and temperature basing on the numerical FEM in a spherical quantum dot. Superlattices Microstruct. 104, 93–103 (2017). https://doi.org/10.1016/j.spmi.2017.02.014

    Article  ADS  Google Scholar 

  40. Y. Yakar, B. Çakır, A. Özmen, Polarizability and electric field gradient of two-electron quantum dots. J. Phys. Chem. Solids 137, 4561 (2020). https://doi.org/10.1016/j.jpcs.2019.109214

    Article  Google Scholar 

  41. M.A. Mkrtchyan, D.B. Hayrapetyan, E.M. Kazaryan, H.A. Sarkisyan, M.Y. Vinnichenko, V.A. Shalygin, D.A. Firsov, L.S. Petrosyan, Effects of an external magnetic field on the interband and intraband optical properties of an asymmetric biconvex lens-shaped quantum dot. Nanomaterials (2022). https://doi.org/10.3390/nano12010060

    Article  Google Scholar 

  42. A. Özmen, Y. Yakar, B. Çakir, Ü. Atav, Computation of the oscillator strength and absorption coefficients for the intersubband transitions of the spherical quantum dot. Opt. Commun. 282, 3999–4004 (2009). https://doi.org/10.1016/j.optcom.2009.06.043

    Article  ADS  Google Scholar 

  43. A.J. Peter, M. Elamathi, C.W. Lee, Magnetic field dependence of excitonic and optical properties of InP/ZnS core/shell nanostructure. J. Electron. Mater. 49, 7386–7393 (2020). https://doi.org/10.1007/s11664-020-08487-y

    Article  ADS  Google Scholar 

  44. V.A. Holovatsky, M. Voitsekhivska, M.Y. Yakhnevych, The effect of magnetic field and donor impurity on electron spectrum in spherical core-shell quantum dot. Superlattices Microstruct. 116, 9–16 (2018). https://doi.org/10.1016/j.spmi.2018.02.006

    Article  ADS  Google Scholar 

  45. N. Amin, A.J. Peter, Magnetic field and core size dependent opto-electronic properties of an impurity in CdS/ZnS core/shell quantum dot. Phys. B Condens. Matter (2022). https://doi.org/10.1016/j.physb.2022.413693

    Article  Google Scholar 

  46. M. Cristea, Simultaneous effects of electric field, shallow donor impurity and geometric shape on the electronic states in ellipsoidal ZnS/CdSe core-shell quantum dots. Phys. E Low Dimens. Syst. Nanostruct. 103, 300–306 (2018). https://doi.org/10.1016/j.physe.2018.06.019

    Article  ADS  Google Scholar 

  47. COMSOL Multiphysics, COMSOL Multiphysics, v. 5.4. COMSOL AB, Stockholm, Sweden (1998). www.comsol.com

  48. J.A. Vinasco, A. Radu, E. Niculescu, M.E. Mora-Ramos, E. Feddi, V. Tulupenko, R.L. Restrepo, E. Kasapoglu, A.L. Morales, C.A. Duque, Electronic states in GaAs-(Al, Ga)As eccentric quantum rings under nonresonant intense laser and magnetic fields. Sci. Rep. (2019). https://doi.org/10.1038/s41598-018-38114-0

    Article  Google Scholar 

  49. S. Aqiqi, C.A. Duque, A. Radu, J.A. Vinasco, D. Laroze, Tunneling influence on the intersubband optical absorption coefficient and refraction index in biased GaAs/AlGaAs quantum well wires. Phys. E Low Dimens. Syst. Nanostruct. 132, 114763 (2021). https://doi.org/10.1016/j.physe.2021.114763

    Article  Google Scholar 

  50. G. Rezaei, B. Vaseghi, J. Ebrahmi, External electric field effects on the electronic and hydrogenic impurity states in ellipsoidal and semi-ellipsoidal quantum dots. Superlattices Microstruct. 49, 591–598 (2011). https://doi.org/10.1016/j.spmi.2011.03006

    Article  ADS  Google Scholar 

  51. J.A. Vinasco, M.A. Londono, R.L. Restrepo, M.E. Mora-Ramos, E.M. Feddi, A. Radu, E. Kasapoglu, A.L. Morales, C.A. Duque, Optical absorption and electroabsorption related to electronic and single dopant transitions in holey elliptical GaAs quantum dots. Phys. Status Solidi B 700, 470 (2017). https://doi.org/10.1002/pssb.201700470

    Article  Google Scholar 

  52. E.B. Al, E. Kasapoglu, S. Sakiroglu, H. Sari, I. Sökmen, C.A. Duque, Binding energies and optical absorption of donor impurities in spherical quantum dot under applied magnetic field. Phys. E Low Dimens. Syst. Nanostruct. (2020). https://doi.org/10.1016/j.physe.2020.114011

    Article  Google Scholar 

  53. G.S. Selopal, H. Zhao, Z.M. Wang, F. Rosei, Core/shell quantum dots solar cells. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.201908762.1

    Article  Google Scholar 

  54. X. Zhanga, Q. Qua, A. Zhoua, Y. Wanga, J. Zhanga, R. Xionga, V. Lendersb, B.B. Manshianb, D. Huaa, S.J. Soenenc, C. Huang, Core-shell microparticles: from rational engineering to diverse applications. Adv. Colloid Interface Sci. 299, 102568 (2022). https://doi.org/10.1016/j.cis.2021.102568

    Article  Google Scholar 

  55. D. Vasudevana, R.R. Gaddamb, A. Trinchic, I. Cole, Core-shell quantum dots: properties and applications. J. Alloys Compd. 636, 395–404 (2015). https://doi.org/10.1016/j.jallcom.2015.02.102

    Article  Google Scholar 

  56. J. Kim, D. Won Hwang, H. Su Jung, K. Wan Kim, X.-H. Pham, S.-H. Lee, J. Woo Byun, W. Kim, H.-M. Kim, E. Hahm, K. Ham, W.-Y. Rho, D. Soo Lee, B.-H. Jun, High-quantum yield alloy-typed core/shell CdSeZnS/ZnS quantum dots for bio-applications. J. Nanobiotechnol. (2022). https://doi.org/10.1186/s12951-021-01227-2

    Article  Google Scholar 

  57. J. Herranz, P. Corfdir, E. Luna, U. Jahn, R.B. Lewis, L. Schrottke, J. Lähnemann, A. Tahraoui, A. Trampert, O. Brandt, L. Geelhaar, Coaxial GaAs/(In, Ga)As dot-in-a-well nanowire heterostructures for electrically driven infrared light generation on Si in the telecommunication O band. ACS Appl. Nano Mater. 3, 165–174 (2020). https://doi.org/10.1021/acsanm.9b01866

    Article  Google Scholar 

Download references

Acknowledgements

This research is carried out at the SIGER (FST USMBA University Morocco) & LPS (FSDM USMBA University Morocco) laboratories. CAD is grateful to the Colombian Agencies: CODI-Universidad de Antioquia (Estrategia de Sostenibilidad de la Universidad de Antioquia and projects “Propiedades magneto-ópticas y óptica no lineal en superredes de Grafeno,” “Estudio de propiedades ópticas en sistemas semiconductores de dimensiones nanoscópicas,” “Propiedades de transporte, espintrónicas y térmicas en el sistema molecular ZincPorfirina,” and “Complejos excitónicos y propiedades de transporte en sistemas nanométricos de semiconductores con simetría axial”), and Facultad de Ciencias Exactas y Naturales-Universidad de Antioquia (CAD exclusive dedication project 2022-2023).

Author information

Authors and Affiliations

Authors

Contributions

The following responsibilities were assigned to the authors who participated in the study: AED & RA collaborated on the numerical computations, detailed analysis and paper writing. CAD & AS suggested the problem and collaborated on the numerical computations and text writing. NES & NZ contributed on the detailed analysis and paper drafting. MJ collaborated on the numerical computations, discussions and writing. AF & KEB worked on the numerical calculations and writing of the manuscript.

Corresponding author

Correspondence to C. A. Duque.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ed-Dahmouny, A., Arraoui, R., Jaouane, M. et al. The influence of the electric and magnetic fields on donor impurity electronic states and optical absorption coefficients in a core/shell GaAs/Al\(_{0.33}\)Ga\(_{0.67}\)As ellipsoidal quantum dot. Eur. Phys. J. Plus 138, 774 (2023). https://doi.org/10.1140/epjp/s13360-023-04281-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04281-x

Navigation