Skip to main content
Log in

Predictions of novel polymorphs of boron nitride: a first-principles study

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Physical properties of boron nitride (BN) have been studied in novel crystal structures such as hexagonal (h), wurtzite (w), 55, GeP, Li2O2, MoC, NiAs, and TiAs. The calculations of structural, electronic, and optical properties of BN have been carried out by “the full-potential linearized augmented plane wave plus local orbital (FP-LAPW + lo)” method framed within the “density functional theory (DFT)”. The phonon band structures have been determined using the pseudo-potential-based approach realized in the CASTEP code, indicating that the h, w, 55, Li2O2, and MoC do not exhibit phonon modes at negative frequency, whereas, GeP, NiAs, and TiAs modifications exhibit phonon modes at the negative frequency. However, the novel polymorphs of BN demonstrated cohesive energies higher/comparable to that of the ground state h-BN. The lattice parameters of h and w structures of BN calculated through “Perdew-Burke-Ernzerhof—generalized gradient approximation (PBE–GGA)” are in good agreement with the available theoretical and experimental data. The band structures calculations indicate that BN crystallized in h, w, GeP, Li2O2, MoC, NiAs, and TiAs show indirect bandgap, whereas the 55 phase shows direct bandgap. The bandgap values show that h-BN and w-BN are insulators, and 55, GeP, Li2O2, MoC, NiAs, and TiAs are semiconductors. Optical parameters, such as the real part of the dielectric function, the imaginary part of the dielectric, reflectivity, absorption coefficients, and refraction spectrum related to all the considered polymorphs, have been studied. These novel polymorphs with greatly evolved physical behavior would be interesting for applications in the current semiconducting industry and other futuristic technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The corresponding author will provide the relevant data upon a reasonable request.]

References

  1. K.T. Park, K. Terakura, N. Hamada, Band-structure calculations for boron nitrides with three different crystal structures. J. Phys. C: Solid State Phys. 20(9), 1241 (1987)

    Article  ADS  Google Scholar 

  2. M. Topsakal, E. Aktürk, S. Ciraci, First-principles study of two- and one-dimensional honeycomb structures of boron nitride. Phys. Rev. B 79(11), 115442 (2009)

    Article  ADS  Google Scholar 

  3. B.N. Onwuagba, Energy band structure studies of zinc-blende BN and BP. Solid State Commun. 89(3), 289–291 (1994)

    Article  ADS  Google Scholar 

  4. V.A. Fomichev, M.A. Rumsh, Investigation of X-ray spectra of hexagonal and cubic boron nitride. J. Phys. Chem. Solids 29(6), 1015–1024 (1968)

    Article  ADS  Google Scholar 

  5. J. Barth, C. Kunz, T.M. Zimkina, Photoemission investigation of hexagonal BN: band structure and atomic effects. Solid State Commun. 36(5), 453–456 (1980)

    Article  ADS  Google Scholar 

  6. Y.N. Xu, W.Y. Ching, Calculation of ground-state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures. Phys. Rev. B Condens Matter 44(15), 7787–7798 (1991)

    Article  ADS  Google Scholar 

  7. S.L. Phutela, S. Arora, D.S. Ahlawat, S. Kansal, Structural and electronic properties of boron nitride using density functional theory. AIP Conf. Proc. 2093(1), 020043 (2019)

    Article  Google Scholar 

  8. J.J. Pouch, S.A. Alterovitz, A review of: “synthesis and properties of boron nitride.” Mater. Manuf. Process. 6(2), 373–374 (1991)

    Article  Google Scholar 

  9. P. Paufler, Landolt-Börnstein. Numerical data and functional relationships in science and technology. New Series. Group III: Crystal and Solid State Physics. Vol. 22: Semiconductors. Subvolume a: Intrinsic Properties of Group IV Elements and III–V, II–VI and I–VII Compounds. Ed. by O, Madelung Springer-Verlag Berlin-Heidelberg-New York-London-Paris-Tokyo 1987. XII + 451 pp. Hard cover DM 1120.—, ISBN 3–540–16609–2. Crystal Research and Technology, 23(10–11): 1360–1360 (1988)

  10. R.S. Pease, An X-ray study of boron nitride. Acta Crystal 5, 356–361 (1952)

    Article  Google Scholar 

  11. F.P. Bundy, J.S. Kasper, Hexagonal diamond—a new form of carbon. J. Chem. Phys. 46(9), 3437–3446 (1967)

    Article  ADS  Google Scholar 

  12. W.H. Balmain, Bemerkungen über die Bildung von Verbindungen des Bors und Siliciums mit Stickstoff und gewissen Metallen. J. Prakt. Chem. 27(1), 422–430 (1842)

    Article  Google Scholar 

  13. R.H. Wentorf Jr., Cubic form of boron nitride. J. Chem. Phys. 26(4), 956–956 (1957)

    Article  ADS  Google Scholar 

  14. A.S. Dworkin, D.J. Sasmor, E.R.V. Artsdalen, The thermodynamics of boron nitride; low-temperature heat capacity and entropy; heats of combustion and formation. J. Chem. Phys. 22(5), 837–842 (1954)

    Article  ADS  Google Scholar 

  15. R. Ahmed, S.J. Hashemifar, H. Akbarzadeh, First principles study of structural and electronic properties of different phases of boron nitride. Physica B 400(1–2), 297–306 (2007)

    Article  ADS  Google Scholar 

  16. N. Izyumskaya, D. Demchenko, S. Das, Ü. Özgür, V. Avrutin, H. Morkoç, Recent development of boron nitride towards electronic applications. Advanced Electronic Materials 3, 1600485 (2017)

    Article  Google Scholar 

  17. M. Kneissl, J. Rass, in III-Nitride Ultraviolet Emitters—Technology and Applications, ed. S.S.i.M. Science. vol. 22. Springer, Cham (2016)

  18. J.M. Venegas, J.T. Grant, W.P. McDermott, S.P. Burt, J. Micka, C.A. Carrero, I. Hermans, Selective oxidation of n-butane and isobutane catalyzed by boron nitride. ChemCatChem 9(12), 2118–2127 (2017)

    Article  Google Scholar 

  19. Y. Malozovsky, C. Bamba, A. Stewart, L. Franklin, D. Bagayoko, Accurate Ground State Electronic and Related Properties of Hexagonal Boron Nitride (h-{BN). J. Modern Phys. 11, 928–943 (2020)

    Article  ADS  Google Scholar 

  20. G. Cassabois, P. Valvin, B. Gil, Hexagonal boron nitride is an indirect bandgap semiconductor. Nat Photonics 10, 262–266 (2016)

    Article  ADS  Google Scholar 

  21. J.H. Edgar, T.B. Hoffman, B. Clubine, M. Currie, X.Z. Du, J.Y. Lin et al., Characterization of bulk hexagonal boron nitride single crystals grown by the metal flux technique. J. Cryst. Growth 403, 110–113 (2014)

    Article  ADS  Google Scholar 

  22. P.E. Van Camp, V.E. Van Doren, J.T. Devreese, Pressure dependent properties of cubic boron nitride. Solid State Commun. 71(12), 1055–1058 (1989)

    Article  ADS  Google Scholar 

  23. A. Zunger, A.J. Freeman, Ab initio self-consistent study of the electronic structure and properties of cubic boron nitride. Phys. Rev. B 17(4), 2030–2042 (1978)

    Article  ADS  Google Scholar 

  24. A. Catellani, M. Posternak, A. Baldereschi, A.J. Freeman, Bulk and surface electronic structure of hexagonal boron nitride. Phys. Rev. B 36(11), 6105–6111 (1987)

    Article  ADS  Google Scholar 

  25. E.K. Takahashi, A.T. Lino, A.C. Ferraz, J.R. Leite, Band-structure calculations of BN by the self-consistent variational cellular method. Phys. Rev. B 41(3), 1691–1694 (1990)

    Article  ADS  Google Scholar 

  26. L. Kleinman, J.C. Phillips, Crystal potential and energy bands of semiconductors. II. Self-consistent calculations for cubic boron nitride. Phys. Rev. 117(2), 460–464 (1960)

    Article  ADS  Google Scholar 

  27. F. Bassani, M. Yoshimine, Electronic band structure of group IV elements and of III-V compounds. Phys. Rev. 130(1), 20–33 (1963)

    Article  ADS  MATH  Google Scholar 

  28. P. Blaha, K. Schwarz, G.K. Madsen, D. Kvasnicka, J. Luitz, wien2k. an augmented plane wave+ local orbitals program for calculating crystal properties (2001)

  29. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  30. F. Tran, P. Blaha, K. Schwarz, Band gap calculations with Becke-Johnson exchange potential. J. Phys.: Condens. Matter 19(19), 196208 (2007)

    ADS  Google Scholar 

  31. A. Hussain, S. Aryal, P. Rulis, M.A. Choudhry, J. Chen, W. Ching, Ab initio electronic structure calculations and optical properties of ordered and disordered Ni3Al. J. Alloy. Compd. 509(17), 5230–5237 (2011)

    Article  Google Scholar 

  32. A. Reshak, I. Kityk, J. Ebothe, A. Fedorchuk, M. Fedyna, H. Kamarudin, S. Auluck, Crystallochemical affinity and optical functions of ZrGa2 and ZrGa3 compounds. J. Alloy. Compd. 546, 14–19 (2013)

    Article  Google Scholar 

  33. Lawal, A., Theoretical study of structural, electronic and optical properties of bismuth-selenide, bismuth-telluride and antimony-telluride/graphene heterostructure for broadband photodetector, in Faculty of Science, Universiti Teknologi Malaysia. p. 177 (2018)

  34. F. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 30(9), 244 (1944)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. R.W.G. Wyckoff, New York Note: cadmium iodide structure. Crystal Struct. 1, 239–444 (1963)

    Google Scholar 

  36. T. Sōma, A. Sawaoka, S. Saito, Characterization of wurtzite type boron nitride synthesized by shock compression. Mater. Res. Bull. 9(6), 755–762 (1974)

    Article  Google Scholar 

  37. J. Furthmüller, J. Hafner, G. Kresse, Ab initio calculation of the structural and electronic properties of carbon and boron nitride using ultrasoft pseudopotentials. Phys. Rev. B 50(21), 15606–15622 (1994)

    Article  ADS  Google Scholar 

  38. G. Kern, G. Kresse, J. Hafner, Ab initio calculation of the lattice dynamics and phase diagram of boron nitride. Phys. Rev. B 59(13), 8551–8559 (1999)

    Article  ADS  Google Scholar 

  39. G. Cappellini, G. Satta, M. Palummo, G. Onida, Optical properties of BN in cubic and layered hexagonal phases. Phys. Rev. B 64(3), 035104 (2001)

    Article  ADS  Google Scholar 

  40. A. Janotti, S.H. Wei, D.J. Singh, First-principles study of the stability of BN and C. Phys. Rev. B 64(17), 174107 (2001)

    Article  ADS  Google Scholar 

  41. Y. Liu, L. Li, Q. Li, X. Zhang, Z. Lu, J. Lin, Y. Ma, Y. Huang, C. Tang, Electronic and optical properties of O-doped porous boron nitride: a first principle study. J. Solid State Chem. 299, 122139 (2021)

    Article  Google Scholar 

  42. E. Kim, C. Chen, First-principles study of phase stability of BN under pressure. Phys. Lett. A 319(3–4), 384–389 (2003)

    Article  ADS  Google Scholar 

  43. Y.-N. Xu, W.Y. Ching, Electronic, optical, and structural properties of some wurtzite crystals. Phys. Rev. B 48(7), 4335–4351 (1993)

    Article  ADS  Google Scholar 

  44. K. Kim, W.R.L. Lambrecht, B. Segall, Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN. Phys. Rev. B 53(24), 16310–16326 (1996)

    Article  ADS  Google Scholar 

  45. N. Ohba, K. Miwa, N. Nagasako, A. Fukumoto, First-principles study on structural, dielectric, and dynamical properties for three BN polytypes. Phys. Rev. B 63(11), 115207 (2001)

    Article  ADS  Google Scholar 

  46. X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Quasiparticle band structure of bulk hexagonal boron nitride and related systems. Phys. Rev. B Condens. Matter 51(11), 6868–6875 (1995)

    Article  ADS  Google Scholar 

  47. B. Arnaud, S. Lebègue, P. Rabiller, M. Alouani, Huge excitonic effects in layered hexagonal boron nitride. Phys Rev Lett 96(2), 026402 (2006)

    Article  ADS  Google Scholar 

  48. M.J. Rand, J.F. Roberts, Preparation and properties of thin film boron nitride. J. Electrochem. Soc. 115(4), 423 (1968)

    Article  ADS  Google Scholar 

  49. V.L. Solozhenko, A.G. Lazarenko, J.P. Petitet, A.V. Kanaev, Bandgap energy of graphite-like hexagonal boron nitride. J. Phys. Chem. Solids 62(7), 1331–1334 (2001)

    Article  ADS  Google Scholar 

  50. J. Zupan, D. Kolar, Optical properties of graphite and boron nitride. J. Phys. C: Solid State Phys. 5(21), 3097 (1972)

    Article  ADS  Google Scholar 

  51. V.V. Lopatin, F.V. Konusov, Energetic states in the boron nitride band gap. J. Phys. Chem. Solids 53(6), 847–854 (1992)

    Article  ADS  Google Scholar 

  52. Y.-C. Zhu, Y. Bando, D.-F. Xue, T. Sekiguchi, D. Golberg, F.-F. Xu, Q.-L. Liu, New boron nitride whiskers: showing strong ultraviolet and visible light luminescence. J. Phys. Chem. B 108, 6193–6196 (2003)

    Article  Google Scholar 

  53. K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3(6), 404–409 (2004)

    Article  ADS  Google Scholar 

  54. W. Baronian, The optical properties of thin boron nitride films. Mater. Res. Bull. 7(2), 119–124 (1972)

    Article  Google Scholar 

  55. Carpenter, L.G.a.K., P.Y. , Journal of Physics D, (1982). 15, 1143.

  56. R. Ahmed, A. Fazal, S.J. Hashemifar, H. Akbarzadeh, First principles study of structural and electronic properties of different phases of boron nitride. Phys. B: Condens. Matter 400(1), 297–306 (2007)

    Article  ADS  Google Scholar 

  57. N.E. Christensen, I. Gorczyca, Optical and structural properties of III–V nitrides under pressure. Phys. Rev. B 50(7), 4397–4415 (1994)

    Article  ADS  Google Scholar 

  58. Y. Al-Douri, Structural phase transition of boron nitride compound. Solid State Commun. 132(7), 465–470 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Brain Pool program (No. 2022H1D3A2A02063677) and Basic Science Research Program (No. 2020R1I1A3A04038112) through the National Research Foundation of Korea (NRF). The authors from University of Bisha extend their appreciation to the Deanship of Scientific Research at University of Bisha for funding this research through the general research project under grant number (UB-GRP- 06 -1444).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Se-Hun Kim or Bakhtiar Ul Haq.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabbir, S., Alqahtani, A., Javed, M.A. et al. Predictions of novel polymorphs of boron nitride: a first-principles study. Eur. Phys. J. Plus 138, 647 (2023). https://doi.org/10.1140/epjp/s13360-023-04276-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04276-8

Navigation