Skip to main content
Log in

Bures and Sjöqvist metrics over thermal state manifolds for spin qubits and superconducting flux qubits

  • Tutorial
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The interplay among differential geometry, statistical physics, and quantum information science has been increasingly gaining theoretical interest in recent years. In this paper, we present an explicit analysis of the Bures and Sjöqvist metrics over the manifolds of thermal states for specific spin qubit and the superconducting flux qubit Hamiltonian models. While the two metrics equally reduce to the Fubini-Study metric in the asymptotic limiting case of the inverse temperature approaching infinity for both Hamiltonian models, we observe that the two metrics are generally different when departing from the zero-temperature limit. In particular, we discuss this discrepancy in the case of the superconducting flux Hamiltonian model. We conclude the two metrics differ in the presence of a nonclassical behavior specified by the noncommutativity of neighboring mixed quantum states. Such a noncommutativity, in turn, is quantified by the two metrics in different manners. Finally, we briefly discuss possible observable consequences of this discrepancy between the two metrics when using them to predict critical and/or complex behavior of physical systems of interest in quantum information science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No Data associated in the manuscript.

References

  1. M. Pettini, Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics (Springer-Verlag, New York, 2007)

    Book  MATH  Google Scholar 

  2. I. Bengtsson, K. Zyczkowski, Geometry of Quantum States (Cambridge University Press, 2006)

    Book  MATH  Google Scholar 

  3. C. Cafaro, P.M. Alsing, Complexity of pure and mixed qubit geodesic paths on curved manifolds. Phys. Rev. D 106, 096004 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  4. C. Cafaro, S. Ray, P.M. Alsing, Complexity and efficiency of minimum entropy production probability paths from quantum dynamical evolutions. Phys. Rev. E 105, 034143 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  5. C. Cafaro, O. Luongo, S. Mancini, H. Quevedo, Thermodynamic length, geometric efficiency and Legendre invariance. Phys. A 590, 126740 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Cafaro, The Information Geometry of Chaos, PhD Thesis, State University of New York at Albany, Albany-NY, USA (2008). Available online at arXiv: math-ph/1601.07935 (2016)

  7. C. Cafaro, Works on an information geometrodynamical approach to chaos. Chaos Solitons Fractals 41, 886 (2009)

    Article  ADS  Google Scholar 

  8. D. Felice, C. Cafaro, S. Mancini, Information geometric methods for complexity. Chaos 28, 032101 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. S. Amari, H. Nagaoka, Methods of Information Geometry (Oxford University Press, 2000)

    MATH  Google Scholar 

  10. P. Zanardi, P. Giorda, M. Cozzini, Information-theoretic differential geometry of quantum phase transitions. Phys. Rev. Lett. 99, 100603 (2007)

    Article  ADS  MATH  Google Scholar 

  11. P. Zanardi, L. Campos Venuti, P. Giorda, Bures metric over thermal manifolds and quantum criticality. Phys. Rev. A76, 062318 (2007)

    Article  ADS  Google Scholar 

  12. P. Pessoa, C. Cafaro, Information geometry for Fermi-Dirac and Bose-Einstein quantum statistics. Phys. A 576, 126061 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Silva, B. Mera, N. Paunkovic, Interferometric geometry from symmetry-broken Uhlmann gauge group with applications to topological phase transitions. Phys. Rev. B 103, 085127 (2021)

    Article  ADS  Google Scholar 

  14. H. V. da Silva, Quantum information geometry and applications, MS Thesis in Engineering Physics, IT Lisboa (2021)

  15. B. Mera, N. Paunkovic, S.T. Amin, V.R. Vieira, Information geometry of quantum critical submanifolds: relevant, marginal, and irrelevant operators. Phys. Rev. B 106, 155101 (2022)

    Article  ADS  Google Scholar 

  16. D. Bures, An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite \(\omega ^{\ast } \)-algebras. Trans. Amer. Math. Soc. 135, 199 (1969)

    MathSciNet  MATH  Google Scholar 

  17. A. Uhlmann, The “transition probability’’ in the state space of a \(\ast \)-algebra. Rep. Math. Phys. 9, 273 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. M. Hübner, Explicit computation of the Bures distance for density matrices. Phys. Lett. A 163, 239 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  19. E. Sjöqvist, Geometry along evolution of mixed quantum states. Phys. Rev. Res. 2, 013344 (2020)

    Article  Google Scholar 

  20. F.D.M. Haldane, Model for a quantum hall effect without Landau levels: condensed-matter realization of the “Parity Anomaly’’. Phys. Rev. Lett. 61, 2015 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  21. J.P. Provost, G. Vallee, Riemannian structure on manifolds of quantum states. Commun. Math. Phys. 76, 289 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. W.K. Wootters, Statistical distance and Hilbert space. Phys. Rev. D 23, 357 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  23. S.L. Braunstein, C.M. Caves, Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Y. Aharonov, J. Anandan, Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  25. J.J. Sakurai, J. Napolitano, Modern Quantum Mechanics (Cambridge University Press, 2017)

    Book  MATH  Google Scholar 

  26. J. Clarke, F.K. Wilhelm, Superconducting quantum bits. Nature 453, 1031 (2008)

    Article  ADS  Google Scholar 

  27. M.H. Devoret, R.J. Schoelkopf, Superconducting circuits for quantum information: An outlook. Science 339, 1169 (2013)

    Article  ADS  Google Scholar 

  28. I. Chirescu, Y. Nakamura, C.J.P.M. Harmans, J.E. Mooij, Coherent quantum dynamics of a superconducting flux qubit. Science 299, 1869 (2003)

    Article  ADS  Google Scholar 

  29. A.O. Niskanen, Y. Nakamura, J.P. Pekola, Information entropic superconducting microcooler. Phys. Rev. B 76, 174523 (2007)

    Article  ADS  Google Scholar 

  30. F.G. Paauw, A. Fedorov, C.J.P.M. Harmans, J.E. Mooij, Tuning the gap of a superconducting flux qubit. Phy. Rev. Lett. 102, 090501 (2009)

    Article  ADS  Google Scholar 

  31. B. Karimi, J.P. Pekola, Otto refrigerator based on a superconducting qubit: classical and quantum performance. Phys. Rev. B 94, 184503 (2016)

    Article  ADS  Google Scholar 

  32. K. Huang, Statistical Mechanics, (John Wiley & Sons, Inc., 1987)

  33. F. Strocchi, Thermal states. Lect. Notes Phys. 732, 139 (2008)

    Article  Google Scholar 

  34. P. M. Alsing, C. Cafaro, O. Luongo, C. Lupo, S. Mancini, H. Quevedo, Comparing metrics for mixed quantum states: Sjöqvist and Bures, to be published (2023)

  35. D.C. Brody, B. Longstaff, Evolution speed of open quantum dynamics. Phys. Rev. Res. 1, 033127 (2019)

    Article  Google Scholar 

  36. K. Zyczkowski, Volume of the set of separable states. II, Phys, Rev. A60, 3496 (1999)

  37. D. Petz, Monotone metrics on matrix spaces. Lin. Algebra Appl. 244, 81 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. D. Petz and Cs. Sudar, Extending the Fisher metric to density matrices, in Geometry in Present Days Science, eds. O. E. Barndorff-Nielsen and E. B. Vendel, World Scientific, pp. 21-34 (1999)

  39. C. Cafaro, P.M. Alsing, Information geometry aspects of minimum entropy production paths from quantum mechanical evolutions. Phys. Rev. E 101, 022110 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  40. S. Gassner, C. Cafaro, S.A. Ali, P.M. Alsing, Information geometric aspects of probability paths with minimum entropy production for quantum state evolution. Int. J. Geom. Meth. Mod. Phys. 18, 2150127 (2021)

    Article  MathSciNet  Google Scholar 

  41. T. Van Vu, Y. Hasegawa, Geometrical bounds of the irreversibility in Markovian systems. Phys. Rev. Lett. 126, 010601 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  42. H.J.D. Miller, M. Mehboudi, Geometry of work fluctuations versus efficiency in microscopic thermal machines. Phys. Rev. Lett. 125, 260602 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  43. C. Cafaro, D. Felice, P.M. Alsing, Quantum Groverian geodesic paths with gravitational and thermal analogies. Eur. Phys. J. Plus 135, 900 (2020)

    Article  Google Scholar 

  44. K. Brandner, K. Saito, Thermodynamic geometry of microscopic heat engines. Phys. Rev. Lett. 124, 040602 (2020)

    Article  ADS  Google Scholar 

  45. S. Ito, M. Oizumi, S. Amari, Unified framework for the entropy production and the stochastic interaction based on information geometry. Phys. Rev. Res. 2, 033048 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

C.C. is grateful to the United States Air Force Research Laboratory (AFRL) Summer Faculty Fellowship Program for providing support for this work. C. C. acknowledges helpful discussions with Orlando Luongo, Cosmo Lupo, Stefano Mancini, and Hernando Quevedo. P.M.A. acknowledges support from the Air Force Office of Scientific Research (AFOSR). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Air Force Research Laboratory (AFRL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Cafaro.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cafaro, C., Alsing, P.M. Bures and Sjöqvist metrics over thermal state manifolds for spin qubits and superconducting flux qubits. Eur. Phys. J. Plus 138, 655 (2023). https://doi.org/10.1140/epjp/s13360-023-04267-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04267-9

Navigation