Skip to main content
Log in

Beryllium nitride (Be3N2) graphene like monolayer and zigzag single walled nanotubes. A DFT exploration of their structural and vibrational properties

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We present a detailed density functional theory study of beryllium nitride Be3N2 in several periodic arrangements ranging from the 3D bulk, the 2D slab model to the 1D (n,0) zigzag single walled nanotubes using B3LYP hybrid functional and Gaussian-type basis sets. IR and Raman spectra are computed through a coupled-perturbed KS/HF scheme permitting identification of all arrangements. For (n,0) single-walled zigzag beryllium nitride nanotubes, the cohesive, rolling and relaxation energies, band-gaps, equilibrium geometries, polarizabilities and vibrational spectra are established where the trend towards the hexagonal monolayer (h- Be3N2) is explored. Their IR spectrum presents two frequency ranges (500–650 cm−1) and (1350–1500 cm−1) that tend towards the optical vibrational modes of the 2D h- Be3N2 layer. Four sets of active bands are observed in their Raman spectrum. The first set contains two Raman modes with vanishing wave numbers when the nanotube radius increases and found to be connected to the elastic constants C12 and C66 of the h- Be3N2 single layer. The second (300–700 cm−1) and fourth (1200–1600 cm−1) modes are intrinsic nanotube active modes that result from the periodic boundary condition along the circumference. The third set (800–1000 cm−1) contains two phonon modes A’1 and E’1 that tend to the Raman active mode E2g of the 2D monolayer. This theoretical contribution should motivate new experimental works dealing with the design and optimization of low-dimensional beryllium nitrides.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sets generated during the current study are available from the corresponding author on reasonable request.

References

  1. S. ur Rehman, J. Liu, Z. Fang, J. Wang, R. Ahmed, C. Wang, H. Bi, ACS Appl. Nano Mater. 2, 4451 (2019)

    Article  Google Scholar 

  2. L. Men, M.A. White, H. Andaraarachchi, B.A. Rosales, J. Vela, Chem. Mater. 29, 168 (2017)

    Article  Google Scholar 

  3. H. Tan, J. Tang, J. Henzie, Y. Li, X. Xu, T. Chen, Z. Wang, J. Wang, Y. Ide, Y. Bando, Y. Yamauchi, ACS Nano 12, 5674 (2018)

    Article  Google Scholar 

  4. M.I. Baig, P.G. Ingole, J.-D. Jeon, S.U. Hong, W.K. Choi, H.K. Lee, J. Chem. Eng. 373, 122 (2019)

    Article  Google Scholar 

  5. F. Withers, M. Dubois, A.K. Savchenko, Phys. Rev. B 82, 073403 (2010)

    Article  ADS  Google Scholar 

  6. T.G. Pedersen, C. Flindt, J. Pedersen, A.-P. Jauho, N.A. Mortensen, K. Pedersen, Phys. Rev. B 77, 245431 (2008)

    Article  ADS  Google Scholar 

  7. T.W. Odom, J.-L. Huang, P. Kim, C.M. Lieber, J. Phys. Chem. B 104, 2794 (2000)

    Article  Google Scholar 

  8. M. Kan, J. Wang, X.-W. Li, S. Zhang, Y. Li, Y. Kawazoe, Q. Sun, P. Jena, J. Phys. Chem. C 118, 1515 (2014)

    Article  Google Scholar 

  9. C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, T. Yu, Adv. Optical Mater. 2, 131 (2014)

    Article  Google Scholar 

  10. J.D. Correa, E. Cisternas, Solid. State Commun. 241, 1 (2016)

    Article  ADS  Google Scholar 

  11. T. Larbi, I. Toumi, K. Doll, M. Amlouk, Surf. Interfaces 24, 101087 (2021)

    Article  Google Scholar 

  12. T. Larbi, K.E. El-Kelany, K. Doll, M. Amlouk, Vib. Spectrosc. 97, 24 (2018)

    Article  Google Scholar 

  13. V. Lacivita, A. Erba, Y. Noël, R. Orlando, Ph. D’Arco, R. Dovesi, J. Chem. Phys. 138, 214706 (2013)

    Article  ADS  Google Scholar 

  14. R. Ahmed, S. ur Rehman, R. Si, C. Wang, Phys. Status Solidi B 258, 2000342 (2020)

    Article  ADS  Google Scholar 

  15. I. Ashraf, S. Rizwan, M. Iqbal, Front. Mater. 7, 181 (2020)

    Article  ADS  Google Scholar 

  16. A. Dey, B.A. Baraiya, S. Adhikary, P.K. Jha, A.C.S. Appl, NanoMater. 4, 493 (2020)

    Google Scholar 

  17. S. Ullah, P.A. Denis, R.B. Capaz, F. Sato, New J. Chem. 43, 2933 (2019)

    Article  Google Scholar 

  18. R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M. Harrison, I.J. Bush, Ph. D’Arco, M. Llunell, M. Causa, Y. Noel, L. Maschio, A. Erba, M. Rérat, S. Casassa Crystal, User’s Manual (University of Torino, Torino, 2017)

    Google Scholar 

  19. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  20. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B. 37, 785 (1988)

    Article  ADS  Google Scholar 

  21. K. Doll, Comput. Phys. Commun. 137, 74 (2001)

    Article  ADS  Google Scholar 

  22. K. Doll, R. Dovesi, R. Orlando, Theor. Chem. Acc. 112, 394 (2004)

    Article  Google Scholar 

  23. M. Prencipe, L. Maschio, B. Kirtman, S. Salustro, A. Erba, R. Dovesi, J. Raman Spectrosc. 45, 703 (2014)

    Article  ADS  Google Scholar 

  24. L. Maschio, B. Kirtman, M. Rérat, R. Orlando, R. Dovesi, J. Phys. Chem. C 139, 164101 (2013)

    Article  Google Scholar 

  25. L. Maschio, B. Kirtman, M. Rérat, R. Orlando, R. Dovesi, J. Phys. Chem. C 139, 164102 (2013)

    Article  Google Scholar 

  26. A. Erba, A. Mahmoud, R. Orlando, R. Dovesi, Phys. Chem. Minerals 4, 630 (2013)

    Google Scholar 

  27. J.F. Nye, Physical properties of crystals (Oxford University Press, Oxford, 1957)

    MATH  Google Scholar 

  28. E. Orhan, S. Jobic, R. Brec, R. Marchand, J.-Y. Saillard, J. Mater. Chem. 12, 2475 (2002)

    Article  Google Scholar 

  29. O. Reckeweg, C. Lind, A. Simon, F.J.Z. Di Salvo, Naturforsch. B 58, 159 (2003)

    Article  Google Scholar 

  30. G. Soto, J.A. Diaz, R. Machorro, A. Reyes-Serrato, W. de la Cruz, Mater. Lett. 52, 29 (2002)

    Article  Google Scholar 

  31. A. Mokhtari, H. Akbarzadeh, Physica B 324, 305 (2002)

    Article  ADS  Google Scholar 

  32. A. Reyes-Serrato, G. Soto, A. Gamietea, M.H. Farias, J. Phys. Chem. Solids 59, 743 (1998)

    Article  ADS  Google Scholar 

  33. R. Sa, W. Zha, D. Li, J. Phys. Chem. Solids. 145, 109575 (2020)

    Article  Google Scholar 

  34. J. Chang, N. Ge, K. Liu, Philos. Mag. 97, 25–2182 (2017)

    Article  ADS  Google Scholar 

  35. S.R. Römer, T. Dörfler, P. Kroll, W. Schnick, Phys. Status Solidi. B 246, 1604 (2009)

    Article  ADS  Google Scholar 

  36. Y. Xia, Q. Li, Y. Ma, Comput. Mate. Sci. 49, S76 (2010)

    Article  Google Scholar 

  37. T. Larbi, K.E. El-Kelany, K. Doll, M. Amlouk, J. Raman Spectrosc. 51, 232 (2020)

    Article  ADS  Google Scholar 

  38. C. Chen, B. Huang, J. Wu, AIP Adv. 8, 105105 (2018)

    Article  ADS  Google Scholar 

  39. B. Peng, H. Zhang, H. Shao, Y. Xu, R. Zhang, H. Zhu, J. Mater. Chem. C 4, 3592 (2016)

    Article  Google Scholar 

  40. T.T. Song, M. Yang, J.W. Chai, M. Callsen, J. Zhou, T. Yang, Z. Zhang, J.S. Pan, D.Z. Chi, Y.P. Feng, S.J. Wang, Sci. Rep. 6, 29221 (2016)

    Article  ADS  Google Scholar 

  41. A. Erba, M. Ferrabone, J. Baima, R. Orlando, M. Rérat, R. Dovesi, J. Chem. Phys. 138, 054906 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Larbi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nehdi, K., Larbi, T., Masri, R. et al. Beryllium nitride (Be3N2) graphene like monolayer and zigzag single walled nanotubes. A DFT exploration of their structural and vibrational properties. Eur. Phys. J. Plus 138, 631 (2023). https://doi.org/10.1140/epjp/s13360-023-04264-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04264-y

Navigation