Skip to main content
Log in

Inverse problem for the quartic mean-field Ising model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper presents a thorough examination of the thermodynamic limit of the pressure function for the mean-field Ising model with four-body interaction. By utilizing a standard entropic variational principle and decoupling method, both upper and lower bounds were derived, and interestingly, these bounds shared the same local maxima. Additionally, the paper explores and solves the inverse problem related to the mean-field Ising model with four-body interaction. We established a connection between the analytical inversion and statistical observations by utilizing the maximum likelihood criteria and creating a relationship between the estimated and theoretical values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No data were used for this work.

References

  1. E.T. Jaynes, Information theory and statistical mechanics. Phys. Rev. 106(4), 620 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. D.J.C. MacKay, Information theory, inference and learning algorithms. Cambridge university press, (2003)

  3. P. Contucci, G. Osabutey, C. Vernia. The inverse problem beyond two-body interaction: the cubic mean-field ising model. arXiv preprint arXiv:2210.03260, (2022)

  4. Y. Ma, M. Huang, Linear quadratic mean field games with a major player: the multi-scale approach. Automatica 113, 108774 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Huang, M. Zhou. Linear quadratic mean field games–part i: The asymptotic solvability problem. arXiv preprint arXiv:1811.00522, (2018)

  6. M. Huang, M. Zhou, Linear quadratic mean field games: asymptotic solvability and relation to the fixed point approach. IEEE Trans. Autom. Control 65(4), 1397–1412 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. N. Li, X. Li, Y. Zhiyong, Indefinite mean-field type linear-quadratic stochastic optimal control problems. Automatica 122, 109267 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. X. Li, J. Sun, J. Yong, Mean-field stochastic linear quadratic optimal control problems: closed-loop solvability. Prob. Uncertain. Quant. Risk 1, 1–24 (2016)

    Article  MathSciNet  Google Scholar 

  9. N.P. Bondarenko, A.V. Gaidel, Solvability and stability of the inverse problem for the quadratic differential pencil. Mathematics 9(20), 2617 (2021)

    Article  Google Scholar 

  10. H. Hibon, Y. Hu, S. Tang. Mean-field type quadratic bsdes. arXiv preprint arXiv:1708.08784, (2017)

  11. R. Beinert, K. Bredies. Tensor-free proximal methods for lifted bilinear/quadratic inverse problems with applications to phase retrieval. Found. Comput. Math., pages 1–52, (2021)

  12. R. Kh Amırov, A. Adiloglu Nabıev. Inverse problems for the quadratic pencil of the sturm-liouville equations with impulse. In Abstract and Applied Analysis, volume 2013. Hindawi (2013)

  13. H.M. Lin, B. Dong, M.T. Chu, Inverse mode problems for real and symmetric quadratic models. Inverse Prob. 26(6), 065003 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. T. Kühn, F. van Wijland, Diagrammatics for the inverse problem in spin systems and simple liquids. J. Phys. A Math. Theor. 56(11), 115001 (2023)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. V.M. Poulsen, S. DeDeo, Inferring cultural landscapes with the inverse Ising model. Entropy 25(2), 264 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  16. Y. Wang, T. Zhou, Inverse problems for quadratic derivative nonlinear wave equations. Commun. Partial Diff. Equ. 44(11), 1140–1158 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Arridge, P. Maass, O. Öktem, C.-B. Schönlieb, Solving inverse problems using data-driven models. Acta Numer. 28, 1–174 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Contucci, J. Kertész, G. Osabutey, Human-ai ecosystem with abrupt changes as a function of the composition. PloS one 17(5), e0267310 (2022)

    Article  Google Scholar 

  19. H.C. Nguyen, R. Zecchina, J. Berg, Inverse statistical problems: from the inverse Ising problem to data science. Adv. Phys. 66(3), 197–261 (2017)

    Article  ADS  Google Scholar 

  20. H.C. Nguyen, J. Berg, Mean-field theory for the inverse at Ising problem low temperatures. Phys. Rev. Let. 109(5), 050602 (2012)

    Article  ADS  Google Scholar 

  21. A. Decelle, F. Ricci-Tersenghi, Solving the inverse Ising problem by mean-field methods in a clustered phase space with many states. Phys. Rev. 94(1), 012112 (2016)

    ADS  MathSciNet  Google Scholar 

  22. M.B. Kloucek, T. Machon, S. Kajimura, C.P. Royall, N. Masuda, F. Turci. Biases in inverse ising estimates of near-critical behaviour. (2023) arXiv preprint arXiv:2301.05556

  23. M.A. Valle, G.A. Ruz, S. Rica, Discovering pairwise interaction strengths among products, Market basket analysis by solving the inverse ising problem. Physica A: Stat. Mech. Appl. 524, 36–44 (2019)

    Article  ADS  Google Scholar 

  24. M. Fedele, C. Vernia, P. Contucci, Inverse problem robustness for multi-species mean-field spin models. J. Phys. A Math. Theor. 46(6), 065001 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. L. Litinskii, B. Kryzhanovsky, Inverse problem for Ising connection matrix with long-range interaction. Mathematics 9(14), 1624 (2021)

    Article  Google Scholar 

  26. T. Sano, A noniterative solution to the inverse Ising problem using a convex upper bound on the partition function. J. Stat. Mech. Theory Exp. 2022(2), 023406 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Deyo, Solving a directed-percolation inverse problem. Phys. Rev. E 106(1), 014305 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  28. F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lucas, A. Patania, J.-G Young, G. Petri, Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1–92 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. A.R. Benson, R. Abebe, M.T. Schaub, A. Jadbabaie, J. Kleinberg, Simplicial closure and higher-order link prediction. Proc. Nat. Acad. Sci. 115(48), E11221–E11230 (2018)

    Article  ADS  Google Scholar 

  30. F. Battiston, E. Amico, A. Barrat, G. Bianconi, G. Ferraz de Arruda, B. Franceschiello, I. Iacopini, S. Kéfi, V. Latora, Y. Moreno et al., The physics of higher-order interactions in complex systems. Nature Phys. 17(10), 1093–1098 (2021)

    Article  ADS  Google Scholar 

  31. B. Subramanian, J. Lebowitz, The study of a three-body interaction Hamiltonian on a lattice. J. Phys. A Math. Gen. 32(35), 6239 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. V. Barsan, Siewert solutions of transcendental equations, generalized lambert functions and physical applications. Open Phys. 16(1), 232–242 (2018)

    Article  Google Scholar 

  33. J. Jalowy, M. Löwe, H. Sambale, Fluctuations of the magnetization in the block potts model. J. Stat. Phys. 187(1), 1–24 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. P. Marton, V. Stepkova, J. Hlinka, Divergence of dielectric permittivity near phase transition within ferroelectric domain boundaries. Phase Trans. 86(1), 103–108 (2013)

    Article  Google Scholar 

  35. A.A. Opoku, G. Osabutey. Multipopulation spin models: a view from large deviations theoretic window. J. Math. (2018)

  36. A. Voss-Böhme. Multi-scale modeling in morphogenesis: a critical analysis of the cellular potts model. (2012)

  37. S.V. Beentjes and A. Khamseh, Higher-order interactions in statistical physics and machine learning: a model-independent solution to the inverse problem at equilibrium. Phys. Rev. E 102(5), 053314 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  38. I. Gallo. An equilibrium approach to modelling social interaction. arXiv preprint arXiv:0907.2561, (2009)

  39. F. Guerra. Mathematical aspects of mean field spin glass theory. arXiv preprint cond-mat/0410435, (2004)

  40. F. Guerra. Spin glasses. arXiv preprint cond-mat/0507581, (2005)

  41. L. De Sanctis. Structural approaches to spin glasses and optimization problems. Princeton University, (2005)

  42. D. Ruelle. Statistical mechanics–rigorous results, reprint, (1989)

  43. J. Zhu, J. Wang, W. Han, X. Dong, Neural relational inference to learn long-range allosteric interactions in proteins from molecular dynamics simulations. Nat. Commun. 13(1), 1661 (2022)

    Article  ADS  Google Scholar 

  44. A. Sanyal, B.R. Lajoie, G. Jain, J. Dekker, The long-range interaction landscape of gene promoters. Nature 489(7414), 109–113 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the staff at the Mathematics and Statistics Department of University of Energy and Natural Resources, Department of Statistics and Actuarial Science, Kwame Nkrumah University of Science and Technology, and Department of Mathematics, Kwame Nkrumah University of Science and Technology for their support and kindness during the period this paper was written.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Kwame Ansah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansah, R.K., Boadi, R.K., Obeng-Denteh, W. et al. Inverse problem for the quartic mean-field Ising model. Eur. Phys. J. Plus 138, 626 (2023). https://doi.org/10.1140/epjp/s13360-023-04251-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04251-3

Navigation