Skip to main content
Log in

The electric and magnetic properties of novel two-dimensional H and T’ Phase GdX2 (X = F, Cl, Br, I) from first-principles calculations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Two-dimensional rare-earth metal halides with large 4f magnetic moments have been found multiferroic with ferromagnetism, ferroelectricity and ferroelasticity. First-principles calculations within density functional theory are carried out to investigate the structural, electronic, and magnetic properties of novel two-dimensional rare earth metal halides GdX2 (X = F, Cl, Br, I), herein, both H and T’ phase structures are studied. The calculated phonon dispersion relationships indicate that H phase structures are dynamically stable, while the T’ phase GdCl2 GdBr2 and GdI2 can exist as freestanding monolayers. The HSE06 hybrid functional theory combing spin–orbit coupling correction is employed to discover that all four H phase structures and three T’ phase structures harbor the conductive behavior of semiconductors. Based on the calculated exchange interactions and magnetocrystalline anisotropy intensities, Curie temperatures of ferromagnetic H phase GdX2 between 323 and 392 K are predicted by Monte Carlo simulations, while Curie temperature of T’ phase GdI2 is about 111 K. However, T’ phase GdCl2 and GdBr2 exhibit stripe-like antiferromagnetic ground states with Néel temperatures of about 76 and 63 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors' comment: The data that support the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. K.S. Novoselov, A. Geim, Nat. Mater 6, 183 (2007)

    Article  ADS  Google Scholar 

  2. C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Nature 546, 265 (2017)

    Article  ADS  Google Scholar 

  3. C. Gong, X. Zhang, Science 363, 706 (2019)

    Article  Google Scholar 

  4. Y. Wen, Z. Liu, Y. Zhang, C. Xia, B. Zhai, X. Zhang, G. Zhai, C. Shen, P. He, R. Cheng, Nano Lett. 20, 3130 (2020)

    Article  ADS  Google Scholar 

  5. X. Jiang, Q. Liu, J. Xing, N. Liu, Y. Guo, Z. Liu, J. Zhao, Appl. Phys. Rev. 8, 031305 (2021)

    Article  ADS  Google Scholar 

  6. I. Kézsmárki, S. Bordács, P. Milde, E. Neuber, L. Eng, J. White, H.M. Rønnow, C. Dewhurst, M. Mochizuki, K. Yanai, Nat. Mater. 14, 1116 (2015)

    Article  ADS  Google Scholar 

  7. S. Nakatsuji, N. Kiyohara, T. Higo, Nature 527, 212 (2015)

    Article  ADS  Google Scholar 

  8. J. Železný, P. Wadley, K. Olejník, A. Hoffmann, H. Ohno, Nat. Phys. 14, 220 (2018)

    Article  Google Scholar 

  9. I. Purnama, W. Gan, D. Wong, W. Lew, Sci. Rep. 5, 1 (2015)

    Google Scholar 

  10. B. Huang, G. Clark, E. Navarro-Moratalla, D.R. Klein, R. Cheng, K.L. Seyler, D. Zhong, E. Schmidgall, M.A. McGuire, D.H. Cobden, Nature 546, 270 (2017)

    Article  ADS  Google Scholar 

  11. Y. Deng, Y. Yu, Y. Song, J. Zhang, N.Z. Wang, Z. Sun, Y. Yi, Y.Z. Wu, S. Wu, J. Zhu, Nature 563, 94 (2018)

    Article  ADS  Google Scholar 

  12. M. Birch, L. Powalla, S. Wintz, O. Hovorka, K. Litzius, J. Loudon, L. Turnbull, V. Nehruji, K. Son, C. Bubeck, Nat. Commun. 13, 3035 (2022)

    Article  ADS  Google Scholar 

  13. S. Ma, G. Li, Z. Li, Y. Zhang, H. Lu, Z. Gao, J. Wu, G. Long, Y. Huang, ACS Nano 16, 19439 (2022)

    Article  Google Scholar 

  14. I. Eren, F. İyikanat, H. Sahin, Phys. Chem. Chem. Phys. 21, 16718 (2019)

    Article  Google Scholar 

  15. L. Pan, H. Wen, L. Huang, L. Chen, H.-X. Deng, J.-B. Xia, Z. Wei, Chin. Phys. B 28, 107504 (2019)

    Article  ADS  Google Scholar 

  16. D.J. O’Hara, T. Zhu, A.H. Trout, A.S. Ahmed, Y.K. Luo, C.H. Lee, M.R. Brenner, S. Rajan, J.A. Gupta, D.W. McComb, Nano Lett. 18, 3125 (2018)

    Article  ADS  Google Scholar 

  17. F. Iyikanat, M. Yagmurcukardes, R.T. Senger, H. Sahin, J. Mater. Chem. C 6, 2019 (2018)

    Google Scholar 

  18. B. Yang, Y.M. Goh, S.H. Sung, G. Ye, S. Biswas, D.A. Kaib, R. Dhakal, S. Yan, C. Li, S. Jiang, Nature Mater. 22, 50 (2023)

    Article  ADS  Google Scholar 

  19. Z. Wang, L. Liu, H. Zheng, M. Zhao, K. Yang, C. Wang, F. Yang, H. Wu, C. Gao, Nanoscale 14, 11745 (2022)

    Article  Google Scholar 

  20. T. Zhang, Y. Wang, H. Li, F. Zhong, J. Shi, M. Wu, Z. Sun, W. Shen, B. Wei, W. Hu, ACS Nano 13, 11353 (2019)

    Article  Google Scholar 

  21. P. Gu, Y. Sun, C. Wang, Y. Peng, Y. Zhu, X. Cheng, K. Yuan, C. Lyu, X. Liu, Q. Tan, Nano Lett. 22, 1233 (2022)

    Article  ADS  Google Scholar 

  22. B. Das, S. Ghosh, T. Kundu, R. Paramanik, S. Maity, M. Palit, S. Das, P. Kumar Hazra, P. Maji, A. Ghosh, Phys. Status Solidi (b) 206(5), 2200422 (2022)

    Google Scholar 

  23. C. Bacaksiz, M. Yagmurcukardes, F. Peeters, M. Milošević, 2D Mater. 7, 025029 (2020)

    Article  Google Scholar 

  24. J. Mohapatra, A. Ramos, J. Elkins, J. Beatty, M. Xing, D. Singh, E.C. La Plante, J. Ping Liu, Appl. Phys. Lett. 118, 183102 (2021)

    Article  ADS  Google Scholar 

  25. P. Wang, C. Zhu, Y. Sun, Y. Zhao, Opt. Laser Technol. 144, 107417 (2021)

    Article  Google Scholar 

  26. J. Luo, G. Xiang, Y. Tang, K. Ou, X. Chen, J. Appl. Phys. 128, 113901 (2020)

    Article  ADS  Google Scholar 

  27. B. Wang, X. Zhang, Y. Zhang, S. Yuan, Y. Guo, S. Dong, J. Wang, Mater. Horiz. 7, 1623 (2020)

    Article  Google Scholar 

  28. W. Liu, J. Tong, L. Deng, B. Yang, G. Xie, G. Qin, F. Tian, X. Zhang, Mater. Today Phys. 21, 100514 (2021)

    Article  Google Scholar 

  29. Y. Li, D. Chen, X. Dong, L. Qiao, Y. He, X. Xiong, J. Li, X. Peng, J. Zheng, X. Wang, J. Phys.: Condens. Matter 32, 335803 (2020)

    Google Scholar 

  30. H.-X. Cheng, J. Zhou, W. Ji, Y.-N. Zhang, Y.-P. Feng, Phys. Rev. B 103, 125121 (2021)

    Article  ADS  Google Scholar 

  31. H. You, Y. Zhang, J. Chen, N. Ding, M. An, L. Miao, S. Dong, Phys. Rev. B 103, L161408 (2021)

    Article  ADS  Google Scholar 

  32. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  33. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  34. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  35. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  36. P. Söderlind, O. Eriksson, B. Johansson, J. Wills, Phys. Rev. B 50, 7291 (1994)

    Article  ADS  Google Scholar 

  37. P. Larson, W.R. Lambrecht, A. Chantis, M. Van Schilfgaarde, Phys. Rev. B 75, 045114 (2007)

    Article  ADS  Google Scholar 

  38. H. Jamnezhad, M. Jafari, J. Comput. Electron. 16, 272 (2017)

    Article  Google Scholar 

  39. A. Togo, I. Tanaka, Scripta Mater. 108, 1 (2015)

    Article  ADS  Google Scholar 

  40. S. Baroni, S. De Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001)

    Article  ADS  Google Scholar 

  41. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003)

    Article  ADS  Google Scholar 

  42. L. Liu, X. Ren, J. Xie, B. Cheng, W. Liu, T. An, H. Qin, J. Hu, Appl. Surf. Sci. 480, 300 (2019)

    Article  ADS  Google Scholar 

  43. A. Kasten, P.H. Muller, M. Schienle, Solid State Commun. 51, 919 (1984)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the International Postdoctoral Exchange Fellowship Program (No.2020018) hosted and financial supported by The Office of China Postdoctoral Council (OCPC) and the Helmholtz Association (GSI Helmholtz Center for Heavy Ion Research), the National Natural Science Foundation of China (51902272), and Scientific Research Foundation of CUIT (Grant No. KYTZ202172).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia Luo or Mu Lan.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Ou, K., Tang, Y. et al. The electric and magnetic properties of novel two-dimensional H and T’ Phase GdX2 (X = F, Cl, Br, I) from first-principles calculations. Eur. Phys. J. Plus 138, 563 (2023). https://doi.org/10.1140/epjp/s13360-023-04207-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04207-7

Navigation