Skip to main content
Log in

Full spectral coverage generation for calibration of astronomical telescope spectrographs

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Calibrating astronomical telescopes necessitates a broadband spectrum that extends into the mid-infrared region, as well as pulse energy that attains magnitudes of tens of μJ while maintaining a stabilized carrier-envelope phase. To address these challenges simultaneously, we introduce a novel and uncomplicated experimental setup that utilizes a specifically oriented type-I bismuth borate crystal. This cost-effective architecture generates pulses that span from 450 to 3000 nm through the combined use of intra-pulse difference frequency generation and optical parametric amplification. The octave-spanning pulses were automatically carrier-envelope phase-stabilized due to self-cancellation of carrier-envelope phase fluctuation. The idler pulse energy achieved was up to 30 μJ without extra amplification stages. By means of our theoretical simulation, this approach exhibits the potential to broaden the spectrum up to 5 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon reasonable request by contacting with the corresponding author.]

References

  1. A. Dinkelaker, A. Rahman, J. Bland-Hawthorn, F. Cantalloube, S. Ellis, P. Feautrier, M. Ireland, L. Labadie, R. Thomson, Astrophotonics: introduction to the feature issue. Appl. Opt. (2021). https://doi.org/10.1364/AO.434555

    Article  Google Scholar 

  2. R.P. Butler et al., Attaining doppler precision of 3 m/s. PASP 108, 500 (1996). https://doi.org/10.1086/133755

    Article  ADS  Google Scholar 

  3. M.G. Suh, X. Yi, Y.H. Lai et al., Searching for exoplanets using a microresonator astrocomb. Nat. Photon 13, 25 (2019). https://doi.org/10.1038/s41566-018-0312-3

    Article  ADS  Google Scholar 

  4. Y. Sun, Wu. Jiayang, M. Tan, Xu. Xingyuan, Y. Li, R. Morandotti, A. Mitchell, D.J. Moss, Applications of optical microcombs. Adv. Opt. Photon. 15, 86 (2023). https://doi.org/10.1364/AOP.470264

    Article  Google Scholar 

  5. A. Quirrenbach et al., CARMENES: Calar Alto high-resolution search for M dwarfs with exo-earths with a near-infrared Echelle spectrograph, Proc. SPIE 7735, Ground-based and Airborne Instrumentation for Astronomy III, (2010) https://doi.org/10.1117/12.857777

  6. F. Pepe et al., ESPRESSO at VLT-On-sky performance and first results. Astron. Astrophys. 645, A96 (2021). https://doi.org/10.1051/0004-6361/202038306

    Article  Google Scholar 

  7. A. Marconi., et al., HIRES, the high-resolution spectrograph for the ELT. arXiv preprint arXiv:2011.12317 (2020) https://doi.org/10.18727/0722-6691/5219

  8. R. McCracken, J. Charsley, D. Reid, A decade of astrocombs: recent advances in frequency combs for astronomy. Opt. Express 25, 15058 (2017). https://doi.org/10.1364/OE.25.015058

    Article  ADS  Google Scholar 

  9. A. Sandage, The change of redshift and apparent luminosity of galaxies due to the deceleration of selected expanding universes. Astrophys. J. 136, 319 (1962). https://doi.org/10.1086/147385

    Article  ADS  Google Scholar 

  10. A. Marconi et al., EELT-HIRES the high-resolution spectrograph for the E-ELT, Proc. SPIE 9908, Ground-based and Airborne Instrumentation for Astronomy VI, (2016) https://doi.org/10.1117/12.2231653

  11. C. Lovis, M. Mayor, F. Pepe et al., An extrasolar planetary system with three Neptune-mass planets. Nature 441, 305 (2006). https://doi.org/10.1038/nature04828

    Article  ADS  Google Scholar 

  12. T. Steinmetz et al., Laser frequency combs for astronomical observations. Science 321, 1335 (2008). https://doi.org/10.1126/science.1161030

    Article  ADS  Google Scholar 

  13. M.T. Murphy et al., High-precision wavelength calibration with laser frequency combs. Mon. Not. R. Astron. Soc. 380, 839 (2007). https://doi.org/10.1111/j.1365-2966.2007.12147.x

    Article  ADS  Google Scholar 

  14. A. Marandi, N. Leindecker, V. Pervak, R. Byer, K. Vodopyanov, Coherence properties of a broadband femtosecond mid-IR optical parametric oscillator operating at degeneracy. Opt. Express 20, 7255 (2012). https://doi.org/10.1364/OE.20.007255

    Article  ADS  Google Scholar 

  15. S.T. Cundiff, Phase stabilization of ultrashort optical pulses. J. Phys. D: Appl. Phys. 35(8), R43 (2002). https://doi.org/10.1088/0022-3727/35/8/201

    Article  ADS  Google Scholar 

  16. L. Chen et al., Application of the nitrogen laser calibration system in LAASO-WFCTA. PoS ICRC2021 (2021) https://doi.org/10.22323/1.395.0269

  17. I. Hartl, H.A. Mckay, R. Thapa, B.K. Thomas, L. Dong, M.E. Fermann, GHz Yb-femtosecond-fiber laser frequency comb. Conf. Lasers Electro-Opt. (CLEO) (2009). https://doi.org/10.1364/CLEO.2009.CMN1

    Article  Google Scholar 

  18. H.-W. Chen, G. Chang, S. Xu, Z. Yang, F.X. Kärtner, 3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser. Opt. Lett. 37(17), 3522 (2012). https://doi.org/10.1364/OL.37.003522

    Article  ADS  Google Scholar 

  19. B. Xu, H. Yasui, Y. Nakajima, Y. Ma, Z. Zhang, K. Minoshima, Fully stabilized 750-MHz Yb:fiber frequency comb. Opt. Express 25(10), 11910 (2017). https://doi.org/10.1364/OE.25.011910

    Article  ADS  Google Scholar 

  20. A. Martinez, S. Yamashita, Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes. Opt. Express 19(7), 6155 (2011). https://doi.org/10.1364/OE.25.011910

    Article  ADS  Google Scholar 

  21. W. Yuanjie., H. Zinan., T. Steinmetz, M. Yeo, K. Stockwald, and R. Holzwarth, 20 GHz astronomical laser frequency comb with super-broadband spectral coverage, Proc. SPIE 12184, Ground-based and Airborne Instrumentation for Astronomy IX, 121841J (2022) https://doi.org/10.1117/12.2624078

  22. R.A. McCracken, K. Balskus, Z. Zhang, D.T. Reid, Atomically referenced 1-GHz optical parametric oscillator frequency comb. Opt. Express 23(12), 16466 (2015). https://doi.org/10.1364/OE.23.016466

    Article  ADS  Google Scholar 

  23. M. Endo, A. Ozawa, Y. Kobayashi, 6-GHz, Kerr-lens mode-locked Yb:Lu2O3 ceramic laser for combresolved broadband spectroscopy. Opt. Lett. 38(21), 4502 (2013). https://doi.org/10.1364/OL.38.004502

    Article  ADS  Google Scholar 

  24. A. Klenner, S. Schilt, T. Südmeyer, U. Keller, Gigahertz frequency comb from a diode-pumped solid-state laser. Opt. Express 22(25), 31008 (2014). https://doi.org/10.1364/OE.22.031008

    Article  ADS  Google Scholar 

  25. C.A. Zaugg, A. Klenner, M. Mangold, A.S. Mayer, S.M. Link, F. Emaury, M. Golling, E. Gini, C.J. Saraceno, B.W. Tilma, U. Keller, Gigahertz self-referenceable frequency comb from a semiconductor disk laser. Opt. Express 22(13), 16445 (2014). https://doi.org/10.1364/OE.22.016445

    Article  ADS  Google Scholar 

  26. A.R. Johnson et al., Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide. Opt. Lett. 40, 5117 (2015). https://doi.org/10.1364/OL.40.005117

    Article  ADS  Google Scholar 

  27. A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, A. Takada, T. Sogawa, M. Koga, Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser. Opt. Express 21(24), 29186 (2013). https://doi.org/10.1364/OE.21.029186

    Article  ADS  Google Scholar 

  28. K. Beha, D. C. Cole, P. Del'Haye, A. Coillet, S. A. Diddams, and S. B. Papp, Self-referencing a continuouswave laser with electro-optic modulation, arXiv:1507.06344v1 (2015) https://doi.org/10.48550/arXiv.1507.06344

  29. K. Kashiwagi, T. Kurokawa, Y. Okuyama, T. Mori, Y. Tanaka, Y. Yamamoto, M. Hirano, Direct generation of 12.5-GHz-spaced optical frequency comb with ultrabroad coverage in near-infrared region by cascaded fiber configuration. Opt. Express 24(8), 8120–8131 (2016). https://doi.org/10.1364/OE.24.008120

    Article  ADS  Google Scholar 

  30. T. Xue, L. Dong, He. Jin-ping, Research status and application prospects of astrophotonics. Chin. Astron. Astrophys 47, 54 (2023). https://doi.org/10.1016/j.chinastron.2023.03.008

    Article  ADS  Google Scholar 

  31. P. Del’Haye, A. Coillet, T. Fortier, K. Beha, D.C. Cole, K.Y. Yang, H. Lee, K.J. Vahala, S.B. Papp, S.A. Diddams, Phase-coherent microwave-to-optical link with a self-referenced microcomb. Nat. Photonics 10(8), 516 (2016). https://doi.org/10.1038/nphoton.2016.105

    Article  ADS  Google Scholar 

  32. A.S. Mayer, A. Klenner, A.R. Johnson, K. Luke, M.R.E. Lamont, Y. Okawachi, M. Lipson, A.L. Gaeta, U. Keller, Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides. Opt. Express 23(12), 15440 (2015). https://doi.org/10.1364/OE.23.015440

    Article  ADS  Google Scholar 

  33. E. Obrzud, M. Rainer, A. Harutyunyan et al., A microphotonic astrocomb. Nat. Photon 13, 31 (2019). https://doi.org/10.1038/s41566-018-0309-y

    Article  ADS  Google Scholar 

  34. G.G. Ycas, F. Quinlan, S.A. Diddams, S. Osterman, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C.F. Bender, B. Botzer, S. Sigurdsson, Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb. Opt. Express 20(6), 6631 (2012). https://doi.org/10.1364/OE.20.006631

    Article  ADS  Google Scholar 

  35. L. Tang, H. Ye, J. Hao, R. Wei, D. Xiao, Design and characterization of a thermally stabilized fiber Fabry-Perot etalon as a wavelength calibrator for high-precision spectroscopy. Appl. Opt. 60, D1 (2021). https://doi.org/10.1364/AO.417586

    Article  Google Scholar 

  36. A.G. Glenday, C.-H. Li, N. Langellier, G. Chang, L.-J. Chen, G. Furesz, A.A. Zibrov, F. Kärtner, D.F. Phillips, D. Sasselov, A. Szentgyorgyi, R.L. Walsworth, Operation of a broadband visible-wavelength astro-comb with a high-resolution astrophysical spectrograph. Optica 2(3), S1 (2015). https://doi.org/10.1364/OPTICA.2.000250

    Article  Google Scholar 

  37. A. Gambetta, R. Ramponi, M. Marangoni, Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator. Opt. Lett. 33(22), 2671 (2008). https://doi.org/10.1364/OL.33.002671

    Article  ADS  Google Scholar 

  38. J.C. Boggio, T. Fremberg, D. Bodenmüller, C. Sandin, M. Zajnulina, A. Kelz, D. Giannone, M. Rutowska, B. Moralejo, M.M. Roth, M. Wysmolek, Wavelength calibration with PMAS at 3.5 m Calar Alto Telescope using a tunable astro-comb. Opt. Commun. 15(415), 186–193 (2018). https://doi.org/10.1016/j.optcom.2018.01.007

    Article  Google Scholar 

  39. Y. Cheng, D. Xiao, R. McCracken, D. Reid, Laser-frequency-comb calibration for the extremely large telescope: an OPO-based infrared astrocomb covering the H and J bands. J. Opt. Soc. Am. B 38, A15 (2021). https://doi.org/10.1364/JOSAB.421310

    Article  ADS  Google Scholar 

  40. M. Nisoli, S. De Silvestri, O. Svelto, Generation of high energy 10 fs pulses by a new pulse compression technique. Appl. Phys. Lett. 68, 2793 (1996). https://doi.org/10.1063/1.116609

    Article  ADS  Google Scholar 

  41. H. Nakatsuka, D. Grischkowsky, A.C. Balant, Nonlinear picosecond-pulse propagation through optical fibers with positive group velocity dispersion. Phys. Rev. Lett. 47, 910 (1981). https://doi.org/10.1103/PhysRevLett.47.910

    Article  ADS  Google Scholar 

  42. C. Vozzi, M. Nisoli, G. Sansone et al., Optimal spectral broadening in hollow-fiber compressor systems. Appl. Phys. B 80, 285 (2005). https://doi.org/10.1007/s00340-004-1721-1

    Article  ADS  Google Scholar 

  43. G. Tempea, V. Yakovlev, B. Bacovic, F. Krausz, K. Ferencz, Tilted-front-interface chirped mirrors. J. Opt. Soc. Am. B 18, 1747 (2001). https://doi.org/10.1364/JOSAB.18.001747

    Article  ADS  Google Scholar 

  44. K.W. DeLong, R. Trebino, J. Hunter, W.E. White, Frequency-resolved optical gating with the use of second-harmonic generation. J. Opt. Soc. Am. B 11(11), 2206–2215 (1994). https://doi.org/10.1364/JOSAB.11.002206

    Article  ADS  Google Scholar 

  45. R. Trebino, Frequency-resolved optical gating: the measurement of ultrashort laser pulses, 1st edn. (Springer, Berlin, 2000), pp.237–330

    Book  Google Scholar 

  46. O.S. Kushnir, Y.V. Burak, O.A. Bevz, I.I. Polovinko, Crystal optical studies of lithium tetraborate. J. Phys.: Condens. Matter. 11(42), 8313 (1999). https://doi.org/10.1088/0953-8984/11/42/312

    Article  ADS  Google Scholar 

  47. J. Kroupa, D. Kasprowicz, A. Majchrowski, E. Michalski, M. Drozdowski, Optical properties of bismuth triborate (BIBO) single crystals. Ferroelectrics 318(1), 77–82 (2005). https://doi.org/10.1080/00150190590966081

    Article  ADS  Google Scholar 

  48. D. Xue, S. Zhang, Structure and non-linear optical properties of β-Barium Borate. Acta. Cryst. 54, 652 (1998). https://doi.org/10.1107/S0108768198004649

    Article  Google Scholar 

  49. H. Hellwig, J. Liebertz, L. Bohaty, Linear optical properties of the monoclinic bismuth borate BiB3O6. J. Appl. Phys. 88, 240 (2000). https://doi.org/10.1063/1.373647

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the funding from National Development and Reform Commission (Q110522S07001, Q110523S07001) and the Fundamental Research Funds for Central Universities (2682020CX77) in China. It is also supported by National Key R&D program of China (2018YFA0404201) and NSFC (12105233).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xie, L., Chen, L. et al. Full spectral coverage generation for calibration of astronomical telescope spectrographs. Eur. Phys. J. Plus 138, 565 (2023). https://doi.org/10.1140/epjp/s13360-023-04204-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04204-w

Navigation