Skip to main content
Log in

Nonlinear simulations of energetic particle modes in tokamak plasmas with reversed magnetic shear

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Effects of energetic particles (EPs) on m/n = 3/1 magnetohydrodynamic (MHD) instabilities have been investigated via hybrid simulations for reversed magnetic shear configurations. The simulation results shown that a global instability, energetic particle modes (EPMs), can be excited by the strong energetic particle drive with the frequency lying into the Alfvén continuum. In the linear growth stage, EPs not only induce radial broadening of mode structures but also enhance toroidal mode coupling when EP beta is large enough. In the nonlinear saturation stage, the good flux surfaces are still kept over the entire plasma area in a long time evolution of EPMs. To clarify nonlinear saturation of the mode, effects of the energetic particle beta values, the width of the particle distribution, the beam energy and the initial pitch angle on the saturation amplitude of the EPMs are discussed in detail. Furthermore, MHD nonlinearity is found to reduce the saturation level of the EPM compared to linear MHD case, while the high-n harmonics have less impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. J.F. Drake, M.A. Shay, W. Thongthai, M. Swisdak, Phys. Rev. Lett. 94, 095001 (2005)

    Article  ADS  Google Scholar 

  2. F. Porcelli et al., Plasma Phys. Control. Fusion 44, B389 (2002)

    Article  Google Scholar 

  3. Z. Chang et al., Phys. Rev. Lett. 77, 3553 (1996)

    Article  ADS  Google Scholar 

  4. F.M. Levinton, S.H. Batha, M.C. Zarnstorff, Phys. Rev. Lett. 75, 4417 (1995)

    Article  ADS  Google Scholar 

  5. P.L. Pritchett, Y.C. Lee, J.F. Drake, Phys. Fluids 23, 1368 (1980)

    Article  ADS  Google Scholar 

  6. J.Q. Dong, S.M. Mahajan, W. Horton, Phys. Plasmas 10, 3151 (2003)

    Article  ADS  Google Scholar 

  7. A. Otto, G.T. Birk, Phys. Fluids B 4, 3811 (1992)

    Article  ADS  Google Scholar 

  8. L. Ofman, Phys. Fluids B 4, 2751 (1992)

    Article  ADS  Google Scholar 

  9. R.L. Dewar, M. Persson, Phys. Fluids B 5, 4273 (1993)

    Article  ADS  Google Scholar 

  10. Q. Yu, Phys. Plasmas 3, 2898 (1996)

    Article  ADS  Google Scholar 

  11. X. Wang, Z.W. Ma, A. Bhattacharjee, Phys. Plasmas 3, 2129 (1996)

    Article  ADS  Google Scholar 

  12. Q. Yu, Phys. Plasmas 4, 1047 (1997)

    Article  ADS  Google Scholar 

  13. Y. Ishii, M. Azumi, Y. Kishimoto, Phys. Rev. Lett. 89, 205002 (2002)

    Article  ADS  Google Scholar 

  14. Z.X. Wang et al., Phys. Rev. Lett. 99, 185004 (2007)

    Article  ADS  Google Scholar 

  15. C.L. Zhang, Z.W. Ma, Phys. Plasmas 16, 122113 (2009)

    Article  ADS  Google Scholar 

  16. A. Fasoli et al., Progress in the ITER physics basis chapter 5: physics of energetic ions. Nucl. Fusion 47, S264 (2007)

    Article  Google Scholar 

  17. K. McGuire et al., Phys. Rev. Lett. 50, 891 (1983)

    Article  ADS  Google Scholar 

  18. L. Chen, R.B. White, M.N. Rosenbluth, Phys. Rev. Lett. 52, 1122 (1984)

    Article  ADS  Google Scholar 

  19. L. Chen, F. Zonca, Rev. Mod. Phys. 88, 015008 (2016)

    Article  ADS  Google Scholar 

  20. F. Zonca et al., Nucl. Fusion 47, 1588 (2007)

    Article  ADS  Google Scholar 

  21. X.Q. Wang, X.G. Wang, Nucl. Fusion 57, 016039 (2017)

    Article  ADS  Google Scholar 

  22. B. Gao et al., Phys. Plasmas 28, 012104 (2021)

    Article  ADS  Google Scholar 

  23. S. Wang, Z.W. Ma, Phys. Plasmas 22(12), 122504 (2015)

    Article  ADS  Google Scholar 

  24. J. Zhu, Z.W. Ma, S. Wang, Phys. Plasmas 23, 122506 (2016)

    Article  ADS  Google Scholar 

  25. W. Zhang, Z.W. Ma, J. Zhu, H.W. Zhang, Plasma Phys. Control. Fusion. 61(7), 075002 (2019)

    Article  ADS  Google Scholar 

  26. W. Zhang, Z.W. Ma, X.Q. Lu, H.W. Zhang, Nucl. Fusion 60(12), 126022 (2020)

    Article  ADS  Google Scholar 

  27. Y. Todo, Rev. Mod. Plasma Phys. 3, 1 (2019)

    Article  ADS  Google Scholar 

  28. C. Cheng, M. Chance, J. Comput. Phys. 71(1), 124–146 (1987)

    Article  ADS  Google Scholar 

  29. H. Cai et al., Phys. Rev. Lett. 106, 075002 (2011)

    Article  ADS  Google Scholar 

  30. Y. He et al., Phys. Rev. Lett. 113, 175001 (2014)

    Article  ADS  Google Scholar 

  31. X.Q. Wang, EPL 115, 45003 (2016)

    Article  ADS  Google Scholar 

  32. X. Zhang, H. Cai, Z.X. Wang, Phys. Plasmas 26, 062505 (2019)

    Article  ADS  Google Scholar 

  33. X.L. Zhu, W. Chen, F. Wang, Z.X. Wang, Nucl. Fusion 60, 046023 (2020)

    Article  ADS  Google Scholar 

  34. W. Shen et al., Nucl. Fusion 60, 106016 (2020)

    Article  ADS  Google Scholar 

  35. G. Meng, X.Q. Wang, X.G. Wang, R.B. Zhang, Phys. Plasmas 22, 092510 (2015)

    Article  ADS  Google Scholar 

  36. P. Maget et al., Nucl. Fusion 46, 797 (2006)

    Article  ADS  Google Scholar 

  37. E. Joffrin et al., Plasma Phys. Control. Fusion 44, 1203 (2002)

    Article  ADS  Google Scholar 

  38. K. Toi et al., Nucl. Fusion 39, 1929 (1999)

    Article  ADS  Google Scholar 

  39. K.L. Wong et al., Phys. Rev. Lett. 85, 996 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. X. G. Wang, Prof. Z. W. Ma for useful suggestions. M. Li acknowledge CLT-K team for supporting the code. This work was supported by the National Natural Science Foundation of China under Grant Nos. 11975188, U22A20262, and the National Key R&D Program of China under Grant Nos. 2019YFE03020002, 2022YFE03070000, 2022YFE03070001 and the Science and Technology Plan Project in Sichuan Province of China under Grant Nos. 2022JDJQ0036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Q. Wang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wang, X.Q., Zhang, B. et al. Nonlinear simulations of energetic particle modes in tokamak plasmas with reversed magnetic shear. Eur. Phys. J. Plus 138, 558 (2023). https://doi.org/10.1140/epjp/s13360-023-04198-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04198-5

Navigation