Skip to main content
Log in

Full-dimensional quantum simulation of X2Σ+ → (2)2Σ+ absorption spectrum of SrLi

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The absorption spectrum of the SrLi molecule from the ground X2Σ+ state to the excited (2)2Σ+ state is simulated with molecular rotation and vibration taken into account. By taking 84Sr6Li as an example, the spectra at three different temperatures T = 1, 10 and 100 K are obtained. The absorption spectrum from the initial vibrational level v = 0 of X2Σ+ to the vibrational levels v′= 0–7 of (2)2Σ+ covers the range from 8400 to 10,200 cm−1. The absorption peak corresponds to the transition v = 0 → v′= 1, of which the rotational quantum number J′ of the excited state has been determined in detail for the P and R branches. The band head occurs in R branch for T = 10 and 100 K, corresponding to the excitation to the rotational levels J′ = 5 ~ 8. Additionally, the spectra for six combinations of the isotopes (84Sr/85Sr/88Sr and 6Li/7Li) have been compared. Due to the isotope effect, for transitions to v′≥ 1, the corresponding spectral bands gradually separate into two classes, of which the spectral bands for xSr7Li are energetically lower than those for xSr6Li (x = 84, 85, 88).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availbility

Data sets generated during the current study are available from the corresponding author on reasonable request.

References

  1. B. Zhao, J.W. Pan, Chem. Soc. Rev. 51, 1685 (2022)

    Article  Google Scholar 

  2. M.G. Hu, Y. Liu, M.A. Nichols, L. Zhu, G. Quemener, O. Dulieu, K.K. Ni, Nat. Chem. 13, 435 (2021)

    Article  Google Scholar 

  3. J. Toscano, H.J. Lewandowski, B.R. Heazlewood, Phys. Chem. Chem. Phys. 22, 9180 (2020)

    Article  Google Scholar 

  4. J. Li, B. Zhao, D. Xie, H. Guo, J. Phys. Chem. Lett. 11, 8844 (2020)

    Article  Google Scholar 

  5. R.V. Krems, Phys. Chem. Chem. Phys. 10, 4079 (2008)

    Article  Google Scholar 

  6. X.-K. Li, D.-C. Zhang, S.-F. Lv, J.-Y. Liu, F.-D. Jia, X.-H. Lin, R. Li, Y. Wu, X.-Y. Xu, P. Xue, X.-J. Liu, Z.-P. Zhong, J. Phys. B: At. Mol. Opt. Phys. 53, 519201 (2020)

    Google Scholar 

  7. T. de Jongh, M. Besemer, Q. Shuai, T. Karman, A. van der Avoird, G.C. Groenenboom, S.Y.T. van de Meerakker, Science 368, 626 (2020)

    Article  ADS  Google Scholar 

  8. A. Bergeat, S. Chefdeville, M. Costes, S.B. Morales, C. Naulin, U. Even, J. Klos, F. Lique, Nat. Chem. 10, 519 (2018)

    Article  Google Scholar 

  9. D.P. Sadler, E.M. Bridge, D. Boddy, A.D. Bounds, N.C. Keegan, G. Lochead, M.P.A. Jones, B. Olmos, Phys. Rev. A 95, 013839 (2017)

    Article  ADS  Google Scholar 

  10. H.P. Buchler, E. Demler, M. Lukin, A. Micheli, N. Prokof’ev, G. Pupillo, P. Zoller, Phys. Rev. Lett. 98, 060404 (2007)

    Article  ADS  Google Scholar 

  11. A. Micheli, G.K. Brennen, P. Zoller, Nat. Phys. 2, 341 (2006)

    Article  Google Scholar 

  12. B. Song, S. Dutta, S. Bhave, J.-C. Yu, E. Carter, N. Cooper, U. Schneider, Nat. Phys. 18, 259 (2022)

    Article  Google Scholar 

  13. Y. Qin, S.-C. Li, J. Phys. A: Math. Theor. 55, 145301 (2022)

    Article  ADS  Google Scholar 

  14. L. Bayha, M. Holten, R. Klemt, K. Subramanian, J. Bjerlin, S.M. Reimann, G.M. Bruun, P.M. Preiss, S. Jochim, Nature 587, 583 (2020)

    Article  ADS  Google Scholar 

  15. M. Heyl, Rep. Prog. Phys. 81, 054001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  16. R. Zhang, Y.-C. Han, S.-L. Cong, M.B. Shundalau, Chinese Phys. B 31, 063402 (2022)

    Article  ADS  Google Scholar 

  17. X.-Y. Wang, M.D. Frye, Z. Su, J. Cao, L. Liu, D.-C. Zhang, H. Yang, J.M. Hutson, B. Zhao, C.-L. Bai, J.-W. Pan, New J. Phys. 23, 115010 (2021)

    Article  ADS  Google Scholar 

  18. Y.-X. Liu, B. Zhao, Chinese Phys. B 29, 023103 (2020)

    Article  ADS  Google Scholar 

  19. Y. Cui, M. Deng, L. You, B. Gao, M.K. Tey, Phys. Rev. A 98, 042708 (2018)

    Article  ADS  Google Scholar 

  20. X.-J. Hu, J.-L. Li, T. Xie, Y.-C. Han, S.-L. Cong, Phys. Rev. A 92, 032709 (2015)

    Article  ADS  Google Scholar 

  21. S. Dong, Y. Cui, C. Shen, Y. Wu, M.K. Tey, L. You, B. Gao, Phys. Rev. A 94, 062702 (2016)

    Article  ADS  Google Scholar 

  22. J.M. Doyle, B.L. Augenbraun, Z.D. Lasner, JPS Conf. Proc. 37, 011004 (2022)

    Google Scholar 

  23. Q. Zhang, Y. Wang, C. Zhu, Y. Wang, X. Zhang, K. Gao, W. Zhang, Chinese Phys. B 29, 093203 (2020)

    Article  ADS  Google Scholar 

  24. A. Prehn, M. Ibrugger, G. Rempe, M. Zeppenfeld, (2018). arXiv:1807.06618v1

  25. X. Zhang, J. Ye, Natl. Sci. Rev. 3, 189 (2016)

    Article  Google Scholar 

  26. M. Kajita, G. Gopakumar, M. Abe, M. Hada, J. Phys. B: At. Mol. Opt. Phys. 46, 025001 (2013)

    Article  ADS  Google Scholar 

  27. T.V. Tscherbul, R.V. Krems, Phys. Rev. Lett. 97, 083201 (2006)

    Article  ADS  Google Scholar 

  28. Y. Wang, H. Du, Y. Li, F. Mei, Y. Hu, L. Xiao, J. Ma, S. Jia, Light. Sci. Appl. 12, 50 (2023)

    Article  ADS  Google Scholar 

  29. Y. Wang, J.H. Zhang, Y. Li, J. Wu, W. Liu, F. Mei, Y. Hu, L. Xiao, J. Ma, C. Chin, S. Jia, Phys. Rev. Lett. 129, 103401 (2022)

    Article  ADS  Google Scholar 

  30. Y. Li, J. Zhang, Y. Wang, H. Du, J. Wu, W. Liu, F. Mei, J. Ma, L. Xiao, S. Jia, Light. Sci. Appl. 11, 13 (2022)

    Article  ADS  Google Scholar 

  31. S. Kotochigova, A. Petrov, M. Linnik, J. Klos, P.S. Julienne, J. Chem. Phys. 135, 164108 (2011)

    Article  ADS  Google Scholar 

  32. J.V. Pototschnig, G. Krois, F. Lackner, W.E. Ernst, J. Mol. Spectrosc. 310, 126 (2015)

    Article  ADS  Google Scholar 

  33. J.V. Pototschnig, G. Krois, F. Lackner, W.E. Ernst, J. Chem. Phys. 141, 234309 (2014)

    Article  ADS  Google Scholar 

  34. F. Lackner, G. Krois, T. Buchsteiner, J.V. Pototschnig, W.E. Ernst, Phys. Rev. Lett. 113, 153001 (2014)

    Article  ADS  Google Scholar 

  35. G. Krois, F. Lackner, J.V. Pototschnig, T. Buchsteiner, W.E. Ernst, Phys. Chem. Chem. Phys. 16, 22373 (2014)

    Article  Google Scholar 

  36. G. Krois, J.V. Pototschnig, F. Lackner, W.E. Ernst, J. Phys. Chem. A 117, 13719 (2013)

    Article  Google Scholar 

  37. J.V. Pototschnig, A.W. Hauser, W.E. Ernst, Phys. Chem. Chem. Phys. 18, 5964 (2016)

    Article  Google Scholar 

  38. L.D. Carr, D. DeMille, R.V. Krems, J. Ye, New J. Phys. 11, 055049 (2009)

    Article  ADS  Google Scholar 

  39. G. Gopakumar, M. Abe, M. Hada, M. Kajita, J. Chem. Phys. 140, 224303 (2014)

    Article  ADS  Google Scholar 

  40. J. Deiglmayr, M. Aymar, R. Wester, M. Weidemuller, O. Dulieu, J. Chem. Phys. 129, 064309 (2008)

    Article  ADS  Google Scholar 

  41. H. Ladjimi, W. Zrafi, A.-R. Allouche, H. Berriche, J. Quant. Spectrosc. Radiat. Transfer 252, 107069 (2020)

    Article  Google Scholar 

  42. H. Ladjimi, M. Farjallah, R. Mlika, A.R. Allouche, H. Berriche, Theor. Chem. Acc. 138, 56 (2019)

    Article  Google Scholar 

  43. I. Zeid, T. Atallah, S. Kontar, W. Chmaisani, N. El-Kork, M. Korek, Comput. Theor. Chem. 1126, 16 (2018)

    Article  Google Scholar 

  44. W. Chmaisani, N. El-Kork, M. Korek, Chem. Phys. 491, 33 (2017)

    Article  Google Scholar 

  45. Y. You, C.-L. Yang, M.-S. Wang, X.-G. Ma, W.-W. Liu, L.-Z. Wang, J. Quant. Spectrosc. Radiat. Transfer 165, 56 (2015)

    Article  ADS  Google Scholar 

  46. D. Gou, X. Kuang, Y. Gao, D. Huo, J. Chem. Phys. 142, 034308 (2015)

    Article  ADS  Google Scholar 

  47. P.S. Żuchowski, R. Guérout, O. Dulieu, Phys. Rev. A 90, 012507 (2014)

    Article  ADS  Google Scholar 

  48. Y. Gao, T. Gao, Mol. Phys. 112, 3015 (2014)

    Article  ADS  Google Scholar 

  49. T. Chen, S. Zhu, X. Li, J. Qian, Y. Wang, Phys. Rev. A 89, 063402 (2014)

    Article  ADS  Google Scholar 

  50. A. Stein, M. Ivanova, A. Pashov, H. Knockel, E. Tiemann, J. Chem. Phys. 138, 114306 (2013)

    Article  ADS  Google Scholar 

  51. G. Gopakumar, M. Abe, M. Hada, M. Kajita, J. Chem. Phys. 138, 194307 (2013)

    Article  ADS  Google Scholar 

  52. L. Augustovicova, P. Soldan, J. Chem. Phys. 136, 084311 (2012)

    Article  ADS  Google Scholar 

  53. T.D. Persinger, J. Han, M.C. Heaven, J. Phys. Chem. A 125, 8274 (2021)

    Article  Google Scholar 

  54. T.D. Persinger, J. Han, M.C. Heaven, J. Phys. Chem. A 125, 3653 (2021)

    Article  Google Scholar 

  55. J. Szczepkowski, A. Grochola, P. Kowalczyk, O. Dulieu, R. Guérout, P.S. Żuchowski, W. Jastrzebski, J. Quant. Spectrosc. Radiat. Transfer 210, 217 (2018)

    Article  ADS  Google Scholar 

  56. A. Ciamei, J. Szczepkowski, A. Bayerle, V. Barbe, L. Reichsollner, S.M. Tzanova, C.C. Chen, B. Pasquiou, A. Grochola, P. Kowalczyk, W. Jastrzebski, F. Schreck, Phys. Chem. Chem. Phys. 20, 26221 (2018)

    Article  Google Scholar 

  57. G. Gopakumar, M. Abe, M. Kajita, M. Hada, Phys. Rev. A 84, 062514 (2011)

    Article  ADS  Google Scholar 

  58. M. Kajita, G. Gopakumar, M. Abe, M. Hada, Phys. Rev. A 85, 062519 (2012)

    Article  ADS  Google Scholar 

  59. M. Kajita, G. Gopakumar, M. Abe, M. Hada, Phys. Rev. A 84, 022507 (2011)

    Article  ADS  Google Scholar 

  60. S. Stellmer, M.K. Tey, R. Grimm, F. Schreck, Phys. Rev. A 82, 041602 (2010)

    Article  ADS  Google Scholar 

  61. S. Stellmer, M.K. Tey, B. Huang, R. Grimm, F. Schreck, Phys. Rev. Lett. 103, 200401 (2009)

    Article  ADS  Google Scholar 

  62. X. Ma, Z. Ye, L. Xie, Z. Guo, L. You, M.K. Tey, (2019). arXiv:1904.05230v1

  63. Z.-X. Ye, L.-Y. Xie, Z. Guo, X.-B. Ma, G.-R. Wang, L. You, M.K. Tey, Phys. Rev. A 102, 033307 (2020)

    Article  ADS  Google Scholar 

  64. R. Guérout, M. Aymar, O. Dulieu, Phys. Rev. A 82, 042508 (2010)

    Article  ADS  Google Scholar 

  65. J.V. Pototschnig, R. Meyer, A.W. Hauser, W.E. Ernst, Phys. Rev. A 95, 022501 (2017)

    Article  ADS  Google Scholar 

  66. S. Guo, M. Bajdich, L. Mitas, P.J. Reynolds, Mol. Phys. 111, 1744 (2013)

    Article  ADS  Google Scholar 

  67. G. Gopakumar, M. Abe, M. Hada, M. Kajita, Phys. Rev. A 84, 045401 (2011)

    Article  ADS  Google Scholar 

  68. E. Schwanke, H. Knöckel, A. Stein, A. Pashov, S. Ospelkaus, E. Tiemann, J. Phys. B: At. Mol. Opt. Phys. 50, 235103 (2017)

    Article  ADS  Google Scholar 

  69. E. Schwanke, J. Gerschmann, H. Knöckel, S. Ospelkaus, E. Tiemann, J. Phys. B: At. Mol. Opt. Phys. 53, 065102 (2020)

    Article  ADS  Google Scholar 

  70. Y.-C. Han, J.-W. Hu, B.-B. Wang, Phys. Rev. A 98, 043420 (2018)

    Article  ADS  Google Scholar 

  71. J.-W. Hu, Y.-C. Han, Chem. Phys. Lett. 783, 139052 (2021)

    Article  Google Scholar 

  72. J.-W. Hu, J. Yu, Y.-C. Han, Chem. Phys. Lett. 792, 139405 (2022)

    Article  Google Scholar 

  73. L. Santos, M. Herman, M. Desouter-Lecomte, N. Vaeck, Mol. Phys. 116, 2213 (2018)

    Article  ADS  Google Scholar 

  74. M. Wang, B.-K. Lyu, J.-L. Li, G.-R. Wang, M.-D. Chen, S.-L. Cong, Phys. Rev. A 99, 053428 (2019)

    Article  ADS  Google Scholar 

  75. J. Cheng, H. Zhang, X. Cheng, S. Wu, Int. J. Quantum Chem. 119, e26027 (2019)

    Article  Google Scholar 

  76. Q.-Y. Cheng, Y.-Z. Song, D.-W. Li, Z.-P. Liu, Q.-T. Meng, Chinese Phys. B 31, 103301 (2022)

    Article  ADS  Google Scholar 

  77. B. Ezra, R. Kosloff, S. Kallush, (2021) arXiv:2110.12458v1

  78. M. Geva, Y. Langbeheim, A. Landau, Z. Amitay, (2023) arXiv:2301.05951v1

  79. E.J. Heller, J. Chem. Phys. 68, 2066 (1978)

    Article  ADS  Google Scholar 

  80. M.D. Feit, J.A. Fleck, J. Chem. Phys. 80, 2578 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  81. H.J. Werner, P.J. Knowles, G. Knizia, F.R. Manby, M. Schutz, P. Celani, T. Korona,R. Lindh, A. Mitrushenkov, G. Rauhut, K.R. Shamasundar, T.B. Adler, R.D. Amos, A. Bernhardsson, A. Berning, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Koppl, Y. Liu, A.W. Lloyd, R.A. Mata, A.J. May, S.J. McNicholas, W. Meyer, M.E. Mura, A.Nicklas, D.P. O’Neill, P. Palmieri, D. Peng, K. Pfluger, R. Pitzer, M. Reiher, T.Shiozaki, H. Stoll, A.J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, A Package of Ab initio Programs, version 2010.1 ( 2010). See http://www.molpro.net/info/users

  82. W. Liu, G. Hong, D. Dai, L. Li, M. Dolg, The Beijing four-component density functional program package (BDF) and its application to EuO, EuS. YbO and YbS. Theor. Chem. Acc. 96, 75 (1997)

    Article  Google Scholar 

  83. Y. Zhang, B. Suo, Z. Wang, N. Zhang, Z. Li, Y. Lei, W. Zou, J. Gao, D. Peng, Z. Pu, Y. Xiao, Q. Sun, F. Wang, Y. Ma, X. Wang, Y. Guo, W. Liu, BDF: A relativistic electronic structure program package. J. Chem. Phys. 152, 064113 (2020)

    Article  ADS  Google Scholar 

  84. W. Liu, F. Wang, L. Li, The Beijing Density Functional (BDF) Program Package: Methodologies and Applications. J. Theor. Comput. Chem. 2, 257 (2003)

    Article  Google Scholar 

  85. W. Liu, F. Wang, L. Li, Relativistic Density Functional Theory: The BDF Program Package, chapter 9, vol. 5 (World Scientific Publishing, Singapore, 2004)

    MATH  Google Scholar 

  86. G. Herzberg, Molecular spectra and molecular structure. Vol.1: Spectra of diatomic molecules (Van Nostrand, Princeton, 1950)

Download references

Acknowledgements

The project is supported by the National Key R&D Program of China (No. 2018YFA503); the National Natural Science Foundation of China (No. 12174044); International Cooperation Fund Project of DBJI (No. ICR2105); the Fundamental Research Funds for the Central Universities (DUT21LK08). We gratefully acknowledge HZWTECH for providing computation facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuo Wang or Yong-Chang Han.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, J., Hu, JW., Guo, Q. et al. Full-dimensional quantum simulation of X2Σ+ → (2)2Σ+ absorption spectrum of SrLi. Eur. Phys. J. Plus 138, 557 (2023). https://doi.org/10.1140/epjp/s13360-023-04186-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04186-9

Navigation