Skip to main content
Log in

Charmonium mass shifts in an unquenched quark model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we performed a coupled-channel calculation and evaluated the mass shifts for all 1S, 2S, 1P, 2P and 1D charmonium valence states below 4 GeV, by incorporating the four-quark components (D, \(D^*\), \(D_s\) and \(D_s^*\) meson pairs) into the quark model. The valence-continuum coupling is provided by the \(^3P_0\) quark-pair creation model. The induced mass shifts appear to be large and negative with the original transition operator in \(^3P_0\) model, which raised up challenges for the valence quark model. More QCD-motivated models should be employed for the quark-pair creation Hamiltonian. So herein, we recalculated the mass shifts with the improved \(^3P_0\) transition operator introduced in our previous work and the mass shifts are reduced by \(75\%\) averagely. Besides, as a exercise, we adjust the confinement parameter \(\Delta\) and recalculate the spectrum of the charmonium states. The masses of some charmonium states are reproduced well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no associated data available.]

References

  1. N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011)

    Article  ADS  Google Scholar 

  2. B. Aubert et al., Phys. Rev. Lett. 101, 071801 (2008). ([0807.1086])

    Article  ADS  Google Scholar 

  3. A. del Amo Sanchez, Phys. Rev. D 82, 111102 (2010)

    Article  ADS  Google Scholar 

  4. T. Barnes, E.S. Swanson, Phys. Rev. C 77, 055206 (2008)

    Article  ADS  Google Scholar 

  5. M.R. Pennington, D.J. Wilson, Phys. Rev. D 76, 077502 (2007)

    Article  ADS  Google Scholar 

  6. Y.S. Kalashnikova, Phys. Rev. D 72, 034010 (2005)

    Article  ADS  Google Scholar 

  7. B.-Q. Li, C. Meng, K.-T. Chao, Phys. Rev. D 80, 014012 (2009)

    Article  ADS  Google Scholar 

  8. A.P. Monteiro, P.P. DSouza, K.B.V. Kumar, DAE Symp. Nucl. Phys. 63, 892–893 (2018)

    Google Scholar 

  9. P.G. Ortega, J. Segovia, D.R. Entem, F. Fernández, Phys. Lett. B 778, 1 (2018)

    Article  ADS  Google Scholar 

  10. Z.-Y. Zhou, Z. Xiao, Phys. Rev. D 84, 034023 (2011)

    Article  ADS  Google Scholar 

  11. Z. Cao, Q. Zhao, Phys. Rev. D 99, 014016 (2019)

    Article  ADS  Google Scholar 

  12. S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985)

    Article  ADS  Google Scholar 

  13. B. Aubert et al., BABAR collaboration. Phys. Rev. Lett. 90, 242001 (2003)

    Article  ADS  Google Scholar 

  14. D. Besson et al., CLEO collaboration. Phys. Rev. D 68, 032002 (2003)

    Article  ADS  Google Scholar 

  15. T. Barnes, F.E. Close, H.J. Lipkin, Phys. Rev. D 68, 054006 (2003)

    Article  ADS  Google Scholar 

  16. E. van Beveren, G. Rupp, Phys. Rev. Lett. 91, 012003 (2003)

    Article  ADS  Google Scholar 

  17. Y.A. Simonov, J.A. Tjon, Phys. Rev. D 70, 114013 (2004)

    Article  ADS  Google Scholar 

  18. P.G. Ortega, J. Segovia, D.R. Entem, F. Fernández, Phys. Rev. D 81, 054023 (2010)

    Article  ADS  Google Scholar 

  19. K. Heikkila, N.A. Tornqvist, S. Ono, Phys. Rev. D 29, 110 (1984)

    Article  ADS  Google Scholar 

  20. E.S. Swanson, Phys. Rep. 429, 243 (2006)

    Article  ADS  Google Scholar 

  21. L. Micu, Nucl. Phys. B 10, 521 (1969)

    Article  ADS  Google Scholar 

  22. T. Barnes, arXiv:hep-ph/0412057

  23. P. Geiger, N. Isgur, Phys. Rev. D 41, 1595 (1990)

    Article  ADS  Google Scholar 

  24. X. Chen, J. Ping, C.D. Roberts, J. Segovia, Phys. Rev. D 97, 094016 (2018)

    Article  ADS  Google Scholar 

  25. E. Hiyama, Y. Kino, M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 (2003)

    Article  ADS  Google Scholar 

  26. E.S. Ackleh, T. Barnes, E.S. Swanson, Phys. Rev. D 54, 6811 (1996)

    Article  ADS  Google Scholar 

  27. S. Moszkowski, Nuclear physics (Gordon and Breach, New York, 1968), p.3

    Google Scholar 

  28. R. Machleidt, K. Holinde, C. Elster, Phys. Rep. 149, 1 (1987)

    Article  ADS  Google Scholar 

  29. A. Valcarce, H. Garcilazo, F. Fernandez, P. Gonzalez, Rep. Prog. Phys. 68, 965 (2005)

    Article  ADS  Google Scholar 

  30. J. Vijande, F. Fernandez, A. Valcarce, J. Phys. G Nucl. Part. Phys. 31, 481–506 (2005)

    Article  ADS  Google Scholar 

  31. R. L. Workman et al., Particle data group. Prog. Theor. Exp. Phys. 083C01 (2022)

  32. A. Le Yaouanc, L. Oliver, O. Pène, J.C. Raynal, Phys. Rev. D 8, 2223 (1973)

    Article  ADS  Google Scholar 

  33. A. Le Yaouanc, L. Oliver, O. Pène, J.-C. Raynal, Phys. Rev. D 9, 1415 (1974)

    Article  ADS  Google Scholar 

  34. S. Capstick, N. Isgur, Phys. Rev. D 34, 2809 (1986)

    Article  ADS  Google Scholar 

  35. W. Roberts, B. Silvestre-Brac, Acta Phys. Austriaca 11, 171 (1992)

    Google Scholar 

  36. S. Capstick, W. Roberts, Phys. Rev. D 49, 4570 (1994)

    Article  ADS  Google Scholar 

  37. P.R. Page, Nucl. Phys. B 446, 189 (1995)

    Article  ADS  Google Scholar 

  38. E.S. Ackleh, T. Barnes, E.S. Swanson, Phys. Rev. D 54, 6811 (1996)

    Article  ADS  Google Scholar 

  39. J. Segovia, D.R. Entem, F. Fernández, Phys. Lett. B 715, 322 (2012)

    Article  ADS  Google Scholar 

  40. A. Le Yaouanc, L. Oliver, O. Pene, J.C. Raynal, Phys. Lett. B 72, 57 (1977)

    Article  ADS  Google Scholar 

  41. E.J. Eichten, K. Lane, C. Quigg, Phys. Rev. D 69, 094019 (2004). https://doi.org/10.1103/PhysRevD.69.094019

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the National Natural Science Foundation of China under Grants No. 12205125, No. 11847145, No. 12205249 and No. 11865019, and also supported by the Natural Science Foundation of Jiangsu Province under Grants No. BK20221166.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyun Chen.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Tan, Y. & Yang, Y. Charmonium mass shifts in an unquenched quark model. Eur. Phys. J. Plus 138, 653 (2023). https://doi.org/10.1140/epjp/s13360-023-04181-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04181-0

Navigation