Skip to main content
Log in

Transmittance spectra of (\({\text{YBa}}_{{\text{2}}} {\text{Cu}}_{3} {\text{O}}_{{7 - x}}\)/\({\text{BaTiO}}_{3} )\) 1D photonic crystals: the role of GaAs and AlxGa(1−x)As semiconductors in the visible range

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We present the transmittance spectra of one-dimensional photonic crystals embedded on two sides with air. The unit cell is composed of a \({\text{YBa}}_{2} {\text{Cu}}_{3} {\text{O}}_{{7 - x}}\) superconductor as material \(A\) and a \({\text{BaTiO}}_{3}\) dielectric as material \({\text{B}}\). The transmittance of the formed structure \(({\text{AB}})^{N}\) was studied using the transfer matrix method for different parameters such as layer widths (\(d_{{\text{A}}}\) and \(d_{{\text{B}}}\)), the angle of incidence, and temperature. Wavelength shifts delimiting the photonic bandgaps (PBGs) are discussed in detail. We found that these wavelengths shifted toward longer values (i.e., a redshift) as the size of the layers increased and the temperature increased. However, increasing the incidence angle shifts the wavelengths to shorter values (i.e., a blueshift). In the second part of this work, we discuss the impact of inserting semiconductor layers \(\left( {{\text{GaAs}}~{\text{or}}~{\text{Al}}_{x} {\text{Ga}}_{{\left( {1 - x} \right)}} {\text{As}}} \right)\) with different bandgaps and varying the hydrostatic pressure, temperature, and aluminum concentration. We demonstrate that these semiconductors can also shift the PBGs and modify their widths; these findings constitute important results with implications for the design and realization of photonic filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: This work is new, and all the results are computed from the equations. The data that support the findings of this study are available from the corresponding author upon reasonable request].

References

  1. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding of the Flow of Light, 2nd edn. (Princeton University Press, Princeton, USA, 2008)

    MATH  Google Scholar 

  2. R.B. Wehrspohn, H. Kitzerow, K. Busch (eds.), NanophotonicMaterials (Wiley-VCH, Berlin, 2008)

    Google Scholar 

  3. K. Sakoda, Optical Properties of Photonic Crystals, 2nd edn. (Springer, Berlin, 2005)

    Book  Google Scholar 

  4. D.W. Prather, S. Shi, A. Sharkawy, J.Murakowski, G. J. Schneider, Photonic Crystals. Theory, Applications, and Fabrication, (Wiley, Hoboken, NJ, 2012)

  5. Q. Gong, X. Hu, Photonic Crystals: Principles and Applications, Pan Stanford Publishing, CRC Press, Taylor & Francis Group, (Boca-Roton, USA, 2014)

  6. J.-M. Louritioz, H. Benisty, V. Berger, J.-M. Gerard, D. Maystre, A. Tchelnokov, Photonic Crystals: Towards Nanoscale Photonic Devices (Springer, Berlin, Heidelber, 2005)

    MATH  Google Scholar 

  7. A.H. Aly, S.-W. Ryu, H.-T. Hsu, Wu. Chien-Jang, Mater. Chem. Phys. 113, 382–384 (2009)

    Article  Google Scholar 

  8. A.H. Aly, A.A. Ameen, M.A. Mahmoud, Z.S. Matar, M. Al-Dossari, H.A. Elsayed. Photonic Crystal Enhanced by Metamaterial for Measuring Electric Permittivity in GHz Range. Photonics. 8, 416 (111) (2021)

  9. B.K. Paul, K. Ahmed, V. Dhasarathan, F.A. Al-Zahrani, M.N. Aktar, M.S. Uddin, A.H. Aly, Investigation of gas sensor based on differential optical absorption spectroscopy using photonic crystal fiber. Alex. Eng. J. 59, 5045–5052 (2020)

    Article  Google Scholar 

  10. A.H. Aly, D. Mohamed, The optical properties of metamaterial-superconductor photonic band gap with/without defect layer. J. Supercond. Nov Magn 32, 1897–1902 (2019)

    Article  Google Scholar 

  11. A.H. Aly, W. Sabra, H.A. Elsayed, Cutoff frequency in metamaterials photonic crystals within Terahertz frequencies. Int. J. Mod. Phys. B 31, 1750123 (2017)

    Article  ADS  Google Scholar 

  12. M. Al-Dossari, S.K. Awasthi, A.M. Mohamed, N.S. Abd El-Gawaad, W. Sabra, A.H. Aly, Bio-alcohol sensor based on one-dimensional photonic crystals for detection of organic materials in wastewater. Materials 15, 4012 (2022)

    Article  ADS  Google Scholar 

  13. I.S. Amiri, B.K. Paul, K. Ahmed, A.H. Aly, R. Zakaria, P. Yupapin, D. Vigneswaran, Tri-core photonic crystal fiber based refractive index dual sensor for salinity and temperature detection. Microw Opt Technol Lett 61(3), 847–852 (2019)

    Article  Google Scholar 

  14. A. Natesan, K.P. Govindasamy, T.R. Gopal, V. Dhasarathan, A.H. Aly, Tricore photonic crystal fibre based refractive index sensor for glucose detection. IET Optoelectron. 13(3), 118–123 (2019)

    Article  Google Scholar 

  15. A.H. Aly, S.E.S. Abdel Ghany, B.M. Kamal, D. Vigneswaran, Theoretical studies of hybrid multifunctional YaBa2Cu3O7 photonic crystals within visible and infra-red regions. Ceram. Int. 46(1), 365–369 (2020)

    Article  Google Scholar 

  16. M.A. Awad, A.H. Aly, Experimental and theoretical studies of hybrid multifunctional TiO2/TiN/TiO2. Ceram. Int. 45(15), 19036–19043 (2019)

    Article  Google Scholar 

  17. H. Arafa, M.D. Aly, BSCCO/SrTiO3 one dimensional superconducting photonic crystal for many applications. J. Supercond. Nov Magn 28, 1699–1703 (2015)

    Article  Google Scholar 

  18. Z.A. Zaky, A. Panda, P.D. Pukhrambam, A.H. Aly, The impact of magnetized cold plasma and its various properties in sensing applications. Sci Rep 12, 3754 (2022)

    Article  ADS  Google Scholar 

  19. A.H. Aly, S.K. Awasthi, M.A. Mohaseb, Z.S. Matar, A.F. Amin, MATLAB simulation-based theoretical study for detection of a wide range of pathogens using 1D defective photonic structure. Crystals 12(2), 220 (2022)

    Article  Google Scholar 

  20. A.H. Aly, S.K. Awasthi, A.M. Mohamed, M. Al-Dossari, Z.S. Matar, M.A. Mohaseb, N.S. Abd El-Gawaad, A.F. Amin, 1D reconfigurable bistable photonic device composed of phase change material for detection of reproductive female hormones. Phys. Scr 96(12), 125533 (2021)

    Article  ADS  Google Scholar 

  21. E. Yablanovitch, Photonic crystals: semiconductors of light. Sci. Amer. 285, 46–55 (2001)

    Article  Google Scholar 

  22. S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486 (1987)

    Article  ADS  Google Scholar 

  23. J. Joannopoulos, S. Johnson, R. Meade, Photonic Crystals: Molding the Flow of Light, (Princenton University Press, 2007)

  24. M. Skorobogatiy, J. Yang, Fundamentals of Photonic Crystal Guiding, (Cambridge University Press, 2009)

  25. A. Aly, H. Elsayed, C. Malek, Defect modes properties in one-dimensional photonic crystals employing a superconducting nanocomposite material. Opt. Appl. 48, 53–56 (2018)

    Google Scholar 

  26. A. Aly, W. Sabra, H. Elsayed, Dielectric and superconducting photonic crystals. J. Supercond. Nov. Magn. 26, 553 (2013)

    Article  Google Scholar 

  27. C. Nayak, A. Aghajamali, M. Solaimani, J. Rakshit, D. Panigrahy, K. Kumar, B. Ramakrishna, Dodecanacci superconductor-metamaterial photonic quasicrystal. Optik 222, 165290 (2020)

    Article  ADS  Google Scholar 

  28. C. Nayak, Dodecanacci extrinsic magnetized plasma multilayer. Opt. Mater. 100, 109653 (2020)

    Article  Google Scholar 

  29. F. Segovia-Chaves, H. Vinck-Posada, Y. Trabelsi, N. Ben Ali, Transmittance spectrum in a one-dimensional photonic crystal with fibonacci sequence superconductor-semiconductor. Optik 217, 164803 (2020)

    Article  ADS  Google Scholar 

  30. Y. Trabelsi, N.B. Ali, A. Elhawil, R. Krishnamurthy, M. Kanzari, I. Amiri, P. Yupapin, Design of structural gigahertz multichanneled filter by using generalized fibonacci superconducting photonic quasicrystals. Result. Phys. 13, 102343 (2019)

    Article  Google Scholar 

  31. F. Segovia-Chaves, H. Vinck-Posada, Effects of temperature, pressure and thickness on a one-dimensional Thue–Morse photonic crystal. Optik 203, 163887 (2020)

    Article  ADS  Google Scholar 

  32. F. Segovia-Chaves, H. Vinck-Posada, Edgar Gomez, Transmittance spectrum in a semiconductor-superconductor quasi-periodic Thue–Morse one-dimensional photonic crystal. Physica C 579, 1315768 (2020)

    Article  Google Scholar 

  33. F. Segovia-Chaves, H. Vinck-Posada, Transmittance spectrum in a regular one-dimensional photonic crystal and with the insertion of a YBa2Cu3O7−x defective layer. Optik 181, 416–422 (2019)

    Article  ADS  Google Scholar 

  34. F. Segovia-Chaves, Y. Trabelsi, Dodecanacci superconductor–semiconductor dispersive photonic quasicrystal one dimensional. Optik 242, 167354 (2021)

    Article  ADS  Google Scholar 

  35. D.M. Calvo-Velasco, Robert Sanchez-Cano: theoretical study of 1D gradient photonic structures with quartic polynomial dielectric profile formed by AllGa1-lAs varying pressure and temperature under oblique incidence. Curr. Appl. Phys. 41, 86–91 (2022)

    Article  ADS  Google Scholar 

  36. S. Adachi, GaAs, AlAs, and AlxGa1xAs: material parameters for use in research and device applications. J. Appl. Phys. 58(3), R1–R29 (1985)

    Article  ADS  Google Scholar 

  37. A. Sivakami, V. Gayathri, Hydrostatic pressure and temperature dependence of dielectric mismatch effect on the impurity binding energy in a spherical quantum dot. Superlattice. Microst. 58, 218–227 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (22UQU4331235DSR01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid Belhadj.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belhadj, W., Alsalmi, O.H., Dakhlaoui, H. et al. Transmittance spectra of (\({\text{YBa}}_{{\text{2}}} {\text{Cu}}_{3} {\text{O}}_{{7 - x}}\)/\({\text{BaTiO}}_{3} )\) 1D photonic crystals: the role of GaAs and AlxGa(1−x)As semiconductors in the visible range. Eur. Phys. J. Plus 138, 554 (2023). https://doi.org/10.1140/epjp/s13360-023-04180-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04180-1

Navigation