Skip to main content

Advertisement

Log in

Cosmo-dynamics of dark energy models resulting from a parametrization of H in f(QT) gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Our objective in this paper is to study the late-time behavior of the universe in a model resulting from a parametrization of the Hubble parameter (H) in f(QT) gravity. We have considered the flat Friedmann–Lemaitre–Robertson–Walker as the background metric and discussed the model in f(QT) gravity, where Q and T are non-metricity and the trace of the energy-momentum tensor respectively. The complicated field equations are solved in a model-independent way by using a simple parametrization of H. Some geometrical parameters and physical parameters for the obtained model are calculated and their cosmic evolution are described through some graphical representation. The physical dynamics of the model are discussed in some detail. Finally, we found the model’s validity by checking the energy conditions, kinematic behavior, and the speed of the sound for the obtained models from the parametrization of H. The interesting results of the models are compelling to the present scenario of late-time cosmic acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data Availibility Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This manuscript has not used any data for the work.]

References

  1. S. Perlmutter et al., Supernova Cosmology Project. Astrophys. J. 517, 565–586 (1999). https://doi.org/10.1086/307221. arXiv:astro-ph/9812133 [astro-ph]

    Article  ADS  Google Scholar 

  2. A.G. Riess et al., Supernova Search Team. Astron. J. 116, 1009–1038 (1998). https://doi.org/10.1086/300499. arXiv:astro-ph/9805201 [astro-ph]

    Article  ADS  Google Scholar 

  3. S. Alam et al., BOSS. Mon. Not. Roy. Astron. Soc. 470(3), 2617–2652 (2017). https://doi.org/10.1093/mnras/stx721. arXiv:1607.03155 [astro-ph.CO]

    Article  ADS  Google Scholar 

  4. N. Aghanim et al., Planck, Astron. Astrophys. 641, A6 (2020) [erratum: Astron. Astrophys. 652, C4 (2021)] https://doi.org/10.1051/0004-6361/201833910. arXiv:1807.06209 [astro-ph.CO]

  5. J. Magana, M.H. Amante, M.A. Garcia-Aspeitia, V. Motta, Mon. Not. Roy. Astron. Soc. 476(1), 1036–1049 (2018). https://doi.org/10.1093/mnras/sty260. arXiv:1706.09848 [astro-ph.CO]

    Article  ADS  Google Scholar 

  6. P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559–606 (2003). https://doi.org/10.1103/RevModPhys.75.559. arXiv:astro-ph/0207347 [astro-ph]

    Article  ADS  Google Scholar 

  7. S. Nojiri, S.D. Odintsov, Phys. Rept. 505, 59–144 (2011). https://doi.org/10.1016/j.physrep.2011.04.001. arXiv:1011.0544 [gr-qc]

    Article  ADS  Google Scholar 

  8. S. Weinberg, Rev. Mod. Phys. 61, 1–23 (1989). https://doi.org/10.1103/RevModPhys.61.1

    Article  ADS  Google Scholar 

  9. N. Arkani-Hamed, L.J. Hall, C.F. Kolda, H. Murayama, Phys. Rev. Lett. 85, 4434–4437 (2000). https://doi.org/10.1103/PhysRevLett.85.4434. arXiv:astro-ph/0005111 [astro-ph]

    Article  ADS  Google Scholar 

  10. M. Kunz, Comptes Rendus Physique 13, 539–565 (2012). https://doi.org/10.1016/j.crhy.2012.04.007. arXiv:1204.5482 [astro-ph.CO]

    Article  ADS  Google Scholar 

  11. A. Hernandez-Almada, J. Magana, M.A. Garcia-Aspeitia, V. Motta, Eur. Phys. J. C 79(1), 12 (2019). https://doi.org/10.1140/epjc/s10052-018-6521-6. arXiv:1805.07895 [astro-ph.CO]

    Article  ADS  Google Scholar 

  12. R.D. Peccei, Lect. Notes Phys. 741, 3–17 (2008). https://doi.org/10.1007/978-3-540-73518-2_1. arXiv:hep-ph/0607268 [hep-ph]

    Article  ADS  Google Scholar 

  13. B. Berenji, J. Gaskins, M. Meyer, Phys. Rev. D 93(4), 045019 (2016). https://doi.org/10.1103/PhysRevD.93.045019. arXiv:1602.00091 [astro-ph.HE]

    Article  ADS  Google Scholar 

  14. T. Matos, L.A. Urena-Lopez, Phys. Rev. D 63, 063506 (2001). https://doi.org/10.1103/PhysRevD.63.063506. arXiv:astro-ph/0006024 [astro-ph]

    Article  ADS  Google Scholar 

  15. T. Matos, L.A. Urena-Lopez, Class. Quant. Grav. 17, L75–L81 (2000). https://doi.org/10.1088/0264-9381/17/13/101. arXiv:astro-ph/0004332 [astro-ph]

    Article  ADS  Google Scholar 

  16. T. Matos, F.S. Guzman, D. Nunez, Phys. Rev. D 62, 061301 (2000). https://doi.org/10.1103/PhysRevD.62.061301. arXiv:astro-ph/0003398 [astro-ph]

    Article  ADS  Google Scholar 

  17. L.A. Urena-Lopez, T. Matos, Phys. Rev. D 62, 081302 (2000). https://doi.org/10.1103/PhysRevD.62.081302. arXiv:astro-ph/0003364 [astro-ph]

    Article  ADS  Google Scholar 

  18. S. Nojiri, S.D. Odintsov, Phys. Rev. D 68, 123512 (2003). https://doi.org/10.1103/PhysRevD.68.123512. arXiv:hep-th/0307288 [hep-th]

    Article  ADS  Google Scholar 

  19. T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, Phys. Rev. D 84, 024020 (2011). https://doi.org/10.1103/PhysRevD.84.024020. arXiv:1104.2669 [gr-qc]

    Article  ADS  Google Scholar 

  20. S. Bahamonde, K.F. Dialektopoulos, C. Escamilla-Rivera, G. Farrugia, V. Gakis, M. Hendry, M. Hohmann, J. Levi Said, J. Mifsud, E. Di Valentino, Rept. Prog. Phys. 86(2), 026901 (2023). https://doi.org/10.1088/1361-6633/ac9cef. arXiv:2106.13793 [gr-qc]

    Article  ADS  Google Scholar 

  21. Y. Xu, G. Li, T. Harko, S.D. Liang, Eur. Phys. J. C 79(8), 708 (2019). https://doi.org/10.1140/epjc/s10052-019-7207-4. arXiv:1908.04760 [gr-qc]

    Article  ADS  Google Scholar 

  22. J. Beltrán Jiménez, L. Heisenberg, T. Koivisto, Phys. Rev. D 98(4), 044048 (2018). https://doi.org/10.1103/PhysRevD.98.044048. arXiv:1710.03116 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  23. S. Arora, S.K.J. Pacif, S. Bhattacharjee, P.K. Sahoo, Phys. Dark Univ. 30, 100664 (2020). https://doi.org/10.1016/j.dark.2020.100664. arXiv:2007.01703 [gr-qc]

    Article  Google Scholar 

  24. N. Godani, G.C. Samanta, Int. J. Geom. Meth. Mod. Phys. 18(09), 2150134 (2021). https://doi.org/10.1142/S0219887821501346. arXiv:2105.01546 [gr-qc]

    Article  Google Scholar 

  25. S. Arora, P.K. Sahoo, Phys. Scripta 95(9), 095003 (2020). https://doi.org/10.1088/1402-4896/abaddc. arXiv:2010.00281 [gr-qc]

    Article  ADS  Google Scholar 

  26. S. Arora, A. Parida, P.K. Sahoo, Eur. Phys. J. C 81(6), 555 (2021). https://doi.org/10.1140/epjc/s10052-021-09358-4. arXiv:2104.00001 [gr-qc]

    Article  ADS  Google Scholar 

  27. S. Arora, J.R.L. Santos, P.K. Sahoo, Phys. Dark Univ. 31, 100790 (2021). https://doi.org/10.1016/j.dark.2021.100790. arXiv:2009.00240 [gr-qc]

    Article  Google Scholar 

  28. Y. Xu, T. Harko, S. Shahidi, S.D. Liang, Eur. Phys. J. C 80(5), 449 (2020). https://doi.org/10.1140/epjc/s10052-020-8023-6. arXiv:2005.04025 [gr-qc]

    Article  ADS  Google Scholar 

  29. G. Gadbail, S. Arora, P.K. Sahoo, Eur. Phys. J. Plus 136(10), 1040 (2021). https://doi.org/10.1140/epjp/s13360-021-02048-w. arXiv:2108.00374 [gr-qc]

    Article  Google Scholar 

  30. G.N. Gadbail, S. Arora, P.K. Sahoo, Eur. Phys. J. C 81(12), 1088 (2021). https://doi.org/10.1140/epjc/s10052-021-09889-w. arXiv:2110.02726 [gr-qc]

    Article  ADS  Google Scholar 

  31. S.K.J. Pacif, Eur. Phys. J. Plus 135(10), 792 (2020). https://doi.org/10.1140/epjp/s13360-020-00769-y. arXiv:2005.06972 [physics.gen-ph]

    Article  Google Scholar 

  32. M. Visser, Phys. Rev. D 56, 7578–7587 (1997). https://doi.org/10.1103/PhysRevD.56.7578. arXiv:gr-qc/9705070 [gr-qc]

    Article  ADS  Google Scholar 

  33. A.I. Arbab, Astrophys. Space Sci. 259, 371–378 (1998). https://doi.org/10.1023/A:1001751906403. arXiv:astro-ph/9810239 [astro-ph]

    Article  ADS  Google Scholar 

  34. S.K.J. Pacif, R. Myrzakulov, S. Myrzakul, Int. J. Geom. Meth. Mod. Phys. 14(07), 1750111 (2017). https://doi.org/10.1142/S0219887817501110. arXiv:1609.02801 [gr-qc]

    Article  Google Scholar 

  35. A. Raychaudhuri, Phys. Rev. 98, 1123–1126 (1955). https://doi.org/10.1103/PhysRev.98.1123

    Article  ADS  MathSciNet  Google Scholar 

  36. C. Barcelo, M. Visser, Int. J. Mod. Phys. D 11, 1553–1560 (2002). https://doi.org/10.1142/S0218271802002888. arXiv:gr-qc/0205066 [gr-qc]

    Article  ADS  Google Scholar 

  37. P.H.R.S. Moraes, P.K. Sahoo, Eur. Phys. J. C 79(8), 677 (2019). https://doi.org/10.1140/epjc/s10052-019-7206-5. arXiv:1903.03421 [gr-qc]

    Article  ADS  Google Scholar 

  38. S. Capozziello, R. D’Agostino, O. Luongo, Int. J. Mod. Phys. D 28(10), 1930016 (2019). https://doi.org/10.1142/S0218271819300167. arXiv:1904.01427 [gr-qc]

    Article  ADS  Google Scholar 

  39. A. Aviles, C. Gruber, O. Luongo, H. Quevedo, Phys. Rev. D 86, 123516 (2012). https://doi.org/10.1103/PhysRevD.86.123516. arXiv:1204.2007 [astro-ph.CO]

    Article  ADS  Google Scholar 

  40. P.J.E. Peebles, Princeton University Press (1993). https://doi.org/10.1515/9780691206721

  41. S. Weinberg, John Wiley and Sons, (1972), ISBN 978-0-471-92567-5, 978-0-471-92567-5

Download references

Acknowledgements

Author SKJP thanks IUCAA, Pune for hospitality and other facilities under its IUCAA associateship program, where a large part of work has been done.

Funding

There is no fund available for the publication of this research article.

Author information

Authors and Affiliations

Authors

Contributions

The calculations, plotting, manuscript writing, and overall manuscript preparation is done by VK under the supervision of SKJP, who has administered the project and completed the project. The manuscript has been read and approved by all authors.

Corresponding author

Correspondence to Shibesh Kumar Jas Pacif.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

The submitted work is original and has not been published anywhere else.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalsariya, V., Pacif, S.K.J. Cosmo-dynamics of dark energy models resulting from a parametrization of H in f(QT) gravity. Eur. Phys. J. Plus 138, 567 (2023). https://doi.org/10.1140/epjp/s13360-023-04177-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04177-w

Navigation