Skip to main content
Log in

A note on concircular vector fields of static plane symmetric perfect fluid spacetimes in f(T) theory of gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The purpose of this study is to categorize static plane symmetric perfect fluid spacetimes via concircular vector fields (CCVFs) in f(T) gravity. In order to achieve our goal we first obtained Einstein field equations (EFEs) for perfect fluid static plane symmetric spacetimes in f(T) theory of gravity and then obtained the concircular vector field equations. All these equations are solved simultaneously to obtain the components of the CCVFs and particular form of the metric functions along with conformal factors. Different possibilities are generated, which are solved completely as different cases. It turns out that perfect fluid static plane symmetric spacetimes in f(T) gravity admit CCVFs of 4, 5, 6, 7, 8 and \(15-\)dimensions. In some cases we obtained solutions of the field equations and their corresponding CCVFs when f(T) is a non-linear function of the torsion scalar T. The current study classifies a spacetime as per its CCVFs in a modified theory of gravity for the first time. The solutions obtained here are novel because the related functions f(T) are linear as well as non-linear functions of the torsion scalar T. In each case the energy density, fluid pressure and the torsion scalar T is also calculated. It is observed that in most of the cases the fluid pressure and energy density are related as \(p\,=\,-\rho \) which indicates that the universe represented by these spacetime metrics behave like dark energy or they can be vacuum energy. Also in some cases the pressure of the fluid and its density can be positive which shows that the rate of expansion can be slow down due to attractive gravitational effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

I hereby certify that data presented in this manuscript is our own and original. All the calculations have done by us and no data is taken from other sources or published materials except where citation is made. This is a mathematical work and we can provide the proofs at any instant if required.

References

  1. G.S. Hall, Symmetries and Curvature Structure in General Relativity (World Scientific, Singapore, 2004)

    MATH  Google Scholar 

  2. A.Z. Petrov, Einstein spaces (Pergamon, Oxford University Press, 1969)

    MATH  Google Scholar 

  3. R. Maartens, S.D. Maharaj, B.O.J. Tupper, General solution and classification of conformal motions in static spherical spacetimes. Class. Quantum Gravity 12, 2577 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  4. R. Maartens, D.P. Mason, M. Tsamparlis, Kinematic and dynamic properties of conformal Killing vectors in anisotropic fluids. J. Math. Phys. 27, 2987 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  5. R. Maartens, S.D. Maharaj, B.O.J. Tupper, Conformal motions in static spherical spacetimes. Class. Quantum Gravity 13, 317 (1996)

    ADS  MATH  Google Scholar 

  6. A.A. Coley, B.O.J. Tupper, Spacetimes admitting inheriting conformal Killing vector fields. Class. Quantum Gravity 7, 1961 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  7. A.A. Coley, B.O.J. Tupper, Spherically symmetric spacetimes admitting inheriting conformal Killing vector fields. Class. Quantum Gravity 8, 2195 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  8. A.A. Coley, B.O.J. Tupper, Spherically symmetric anisotropic fluid ICKV spacetimes. Class. Quantum Gravity 11, 2553 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  9. A.A. Coley, B.O.J. Tupper, Affine conformal vectors in spacetime. J. Math. Phys. 33, 1754 (1992)

    ADS  MathSciNet  Google Scholar 

  10. M. Tsamparlis, Conformal reduction of a spacetime metric. Class. Quantum Gravity 15, 2901 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  11. B.Y. Chen, Some results on concircular vector fields and their applications to Ricci solitons. Bull. Korean Math. Soc. 52, 1535 (2015)

    MathSciNet  MATH  Google Scholar 

  12. S. Sevinc, G.A. Sekerci, A.C. Coken, Some results about concircular and concurrent vector fields on pseudo-kaehler manifolds. J. Phys. Conf. Ser.. 766, 012034 (2016)

    Google Scholar 

  13. M. Crampin, Concircular Vector Fields and Special Conformal Killing Tensors, Differential Geometric Methods in Mechanics and Field Theory (Academia Press, 2007)

    Google Scholar 

  14. B.Y. Chen, A simple characterization of generalized Robertson–Walker spacetimes. Gen. Relativ. Gravit. 46, 1833 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  15. S. Ishihara, On infinitesimal concircular transformations. Kodai Math. Sem. Rep. 12, 45 (1960)

    MathSciNet  MATH  Google Scholar 

  16. S. Bondarenko, General relativity Schwarzschild spacetime negative mass. Mod. Phys. Lett. A 34, 1950084 (2019)

    ADS  Google Scholar 

  17. A. Das, N. Banerjee, Unitary black hole radiation: Schwarzschild-global monopole background. Eur. Phys. J. C 79, 704 (2019)

    ADS  Google Scholar 

  18. I.I. Shapiro, W.B. Smith, M.E. Ash, S. Herrick, General relativity and the orbit of Icarus. Astron. J. 76, 588 (1971)

    ADS  Google Scholar 

  19. I.I. Shaprio, C.C. Counselman, R.W. King, Verification of the principle of equivalence for massive bodies. Phys. Rev. Lett. 36, 555 (1976)

    ADS  Google Scholar 

  20. N. Yunes, X. Siemens, Gravitational-wave tests of general relativity with ground based detectors and pulsar-timing arrays. Living Rev. Relativ. 16, 90 (2013)

    Google Scholar 

  21. O. Dreyer, B. Kelly, B. Krishnan, L.S. Finn, D. Garrison, P.L. Aleman, Black hole spectroscopy: testing general relativity through gravitational wave observations. Class. Quantum Gravity 21, 787 (2004)

    ADS  MATH  Google Scholar 

  22. J.R. Gair, M. Vallisneri, S.L. Larson, J.G. Baker, Strong gravity signatures in the polarization of gravitational waves. Living Rev. Relativ. 16, 1 (2013)

    ADS  Google Scholar 

  23. Z. Curson, K. Yagi, Testing General Relativity with Gravitational Waves (Springer, Singapore, 2021)

    Google Scholar 

  24. K. Yagi, L.C. Stein, Black hole based tests of general relativity. Class. Quantum Gravity 33, 054001 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  25. T. Johannsen, A.E. Broderick, P.M. Plewa, S. Chatzopoulos, S.S. Doeleman, F. Eisenhauer, V.L. Fish, R. Genzel, O. Gerhard, M.D. Johnson, Testing General relativity with the shadow size. Phys. Rev. Lett. 116, 031101 (2016)

    ADS  Google Scholar 

  26. A.G. Riess, S. Casertano, W. Yuan, L. Macri, J. Anderson, J. MacKenty, B.E. Tucker, New parallaxes of galactic cepheids from spatially scanning the hubble space telescope: Implications for the hubble constant. Astrophys. J. 855, 136 (2018)

    ADS  Google Scholar 

  27. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Modified gravity theories on a nutshell inflation, bounce and late-time evolution. Phys. Rep. 692, 1 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  28. T. Clifton, P.G. Ferriera, A. Padilla, C. Skordis, Modified gravity and cosmology. Phys. Rep. 513, 1 (2012)

    ADS  MathSciNet  Google Scholar 

  29. P.J. Peebles, B. Ratra, The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  30. T. Padmanabhan, Cosmological constant-the weight of the vacuum. Phys. Rep. 380, 235 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  31. S. Nojiri, S.D. Odintsov, Where new gravitational physics comes from M-theory? Phys. Lett. B 576, 5 (2003)

    ADS  MATH  Google Scholar 

  32. U. Gunther, A. Zhuk, V. Bezerra, C. Romero, AdS and stabilized extra dimensions in multi-dimensional gravitational models with nonlinear scalar curvature terms R- 1 and R4. Class. Quantum Gravity 22, 3135 (2005)

    ADS  MATH  Google Scholar 

  33. S. Nojiri, S.D. Odintsov, M. Sasaki, Gauss–Bonnet dark energy. Phys. Rev. D 71, 123509 (2005)

    ADS  Google Scholar 

  34. S. Nojiri, S.D. Odintsov, Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Methods Modern Phys. 4, 115 (2007)

    MathSciNet  MATH  Google Scholar 

  35. S. Capozziello, M. De Laurentis, Extended theories of gravity. Phys. Rep. 509, 167 (2011)

    ADS  MathSciNet  Google Scholar 

  36. D. Saez-Gomez, Modified \(f(R)\) gravity from scalar tensor theory and inhomogeneous EoS dark energy. Gen. Relativ. Gravit. 41, 1527 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  37. S. Nojiri, S. Odintsov, Modified gravity with negative and positive powers of curvature unification of inflation and cosmic acceleration. Phys. Rev. D 68, 123512 (2003)

    ADS  Google Scholar 

  38. V. Faraoni, \(f(R)\) gravity successes and challenges, arXiv preprint arXiv:0810.2602 (2008)

  39. A. De la Cruz-Dombriz, A. Dobado, \(f(R)\) gravity without a cosmological constant. Phys. Rev. D 74, 087501 (2006)

    ADS  Google Scholar 

  40. W. Hu, I. Sawicki, Models of \(f(R)\) cosmic acceleration that evade solar system tests. Phys. Rev. D. 76, 064004 (2007)

    ADS  Google Scholar 

  41. S. Capozziello, S. Tsujikawa, Solar system and equivalence principle constraints on \(f(R)\) gravity by the chameleon approach. Phys. Rev. D 77, 107501 (2008)

    ADS  Google Scholar 

  42. A. de La Cruz-Dombriz, A.A.L.M. Dobado, A.L. Maroto, Black holes in \(f(R)\) theories. Phys. Rev. D 80, 124011 (2009)

    ADS  Google Scholar 

  43. J.A.R. Cembranos, A. De la Cruz-Dombriz, B.M. Nunez, Gravitational collapse in \(f(R)\) theories. J. Cosmol. Astropart. Phys. 1204, 021 (2012)

    ADS  Google Scholar 

  44. J. B. Jimenez, A. de la Cruz Dombriz, A. D. Gonzelez, A. L. Maroto, J. A. R. Cembranos, Preface towards new paradigms proceeding of the spanish relativity meeting in, AIP Conference Proceedings vol. 1458 (2012) 491

  45. S. Capozziello, Curvature quintessence. Int. J. Modern Phys. D 11, 483 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  46. A.V. Astashenok, S. Capozziello, S.D. Odintsov, Further stable neutron star models from \(f(R)\) gravity. J. Cosmol. Astropart. Phys. 12, 040 (2013)

    ADS  Google Scholar 

  47. J.W. Maluf, The teleparallel equivalent of general relativity. Ann. Phys. 525, 339 (2013)

    MathSciNet  Google Scholar 

  48. G.R. Bengochea, R. Ferraro, Dark torsion as the cosmic speed-up. Phys. Rev. D 79, 142019 (2009)

    Google Scholar 

  49. M. Jamil, D. Momeni, R. Myrzakulov, Warm intermediate inflation in \(f(T)\) gravity. Int. J. Theor. Phys. 54, 1098 (2015)

    MathSciNet  MATH  Google Scholar 

  50. R. Ferraro, F. Fiorini, Born-infeld gravity in weitzenbock space-time. Phys. Rev. D 78, 124019 (2008)

    ADS  MathSciNet  Google Scholar 

  51. Y.F. Cai, S. Capozziello, M. De Laurentis, E.N. Saridakis, \(f(T)\) teleparallel gravity and cosmology. Rep. Prog. Phys. 79, 106901 (2016)

    ADS  Google Scholar 

  52. S. Capozziello, O. Luongo, E.N. Saridakis, Transition redshift in \(f(T)\) cosmology and observational constraints. Phys. Rev. D 91, 124037 (2015)

    ADS  MathSciNet  Google Scholar 

  53. S. Capozziello, V.F. Cardone, H. Farajollahi, A. Ravanpak, Cosmography in \(f(T)\) gravity. Phys. Rev. D. 84, 043527 (2011)

    ADS  Google Scholar 

  54. T. Wang, Static solutions with spherical symmetry in \(f(T)\) theories. Phys. Rev. D. 84, 024042 (2011)

    ADS  Google Scholar 

  55. S. Capozziello, P.A. Gonzalez, E.N. Saridakis, Y. Vasquez, Exact charged black-hole solutions in D-dimensional \(f(T)\) gravity torsion vs curvature analysis. J. High Energy Phys. 02, 039 (2013)

    ADS  Google Scholar 

  56. E.L. Junior, M.E. Rodrigues, M.J. Houndjo, J. Cosmo, Regular black holes in \(f(T)\) gravity through a nonlinear electrodynamics source. J. Cosmol. Astropart. Phys. 10, 060 (2015)

    ADS  MathSciNet  Google Scholar 

  57. K. Atazadeh, M. Mousavi, Vacuum spherically symmetric solutions in \(f(T)\) gravity. Eur. Phys. J. C 73, 2272 (2013)

    ADS  Google Scholar 

  58. M.H. Daouda, M.E. Rodrigues, M.J.S. Houndjo, Static anisotropic solutions in \(f(T)\) theory. Eur. Phys. J. C 72, 1890 (2012)

    ADS  Google Scholar 

  59. G.G.L. Nashed, Chin. (1+4)-dimensional spherically symmetric black holes in \(f(T)\). Phys. Lett. 29, 050402 (2012)

    Google Scholar 

  60. G.G.L. Nashed, A special exact spherically symmetric solution in \(f(T)\) gravity theories. Gen. Relativ. Gravit. 45, 1887 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  61. G.G.L. Nashed, Analytic charged spherically symmetric solution in \(f(T)\) gravity. J. Phys. Soc. Jpn. 82, 094006 (2013)

    ADS  Google Scholar 

  62. G.G.L. Nashed, Spherically symmetric charged-dS solution in \(f(T)\) gravity theories. Phys. Rev. D. 88, 104034 (2013)

    ADS  Google Scholar 

  63. M.H. Daouda, M.E. Rodrigues, M.J.S. Houndjo, New static solutions in \(f(T)\) theory. Eur. Phys. J. C 71, 1817 (2011)

    ADS  Google Scholar 

  64. M. Sharif, S. Rani, Dynamical instability of spherical collapse in \(f(T)\) gravity. Mon. Not. R. Astron. Soc. 440, 2255 (2014)

    ADS  Google Scholar 

  65. M.L. Ruggiero, N. Radicella, Weak-field spherically symmetric solutions in \(f(T)\) gravity. Phys. Rev. D 91, 104014 (2015)

    ADS  MathSciNet  Google Scholar 

  66. A.N. Nurbaki, S. Capozziello, C. Deliduman, Spherical and cylindrical solutions in \(f(T)\) gravity by Noether symmetry approach. Eur. Phys. J. C 80, 108 (2020)

    ADS  Google Scholar 

  67. S. Qazi, F. Hussain, G. Shabbir, Exploring conformal vector fields of Bianchi type-I perfect fluid solutions in \(f(T)\) gravity. Int. J. Geomet. Methods Modern Phys. 18, 2150161 (2021)

    ADS  MathSciNet  Google Scholar 

  68. S. Qazi, F. Hussain, M. Ramzan, S. Haq, A note on classification of Kantowski-Sachs and Bianchi type-III solutions in \(f(T)\) gravity via conformal vector fields. Int. J. Geomet. Methods Modern Phys. 19, 2250188 (2022)

    ADS  MathSciNet  Google Scholar 

  69. F. Hussain, M. Ali, M. Ramzan, S. Qazi, Classification of static spherically symmetric perfect fluid spacetimes via conformal vector fields in \(f(T)\) gravity. Commun. Theor. Phys. 74, 125403 (2022)

    ADS  Google Scholar 

  70. M. Ali, F. Hussain, G. Shabbir, S. Hussain, M. Ramzan, Classification of nonconformally flat static plane symmetric perfect fluid solutions via proper conformal vector fields in \(f(T)\) gravity. Int. J. Geomet. Methods Modern Phys. 17, 2050218 (2020)

    ADS  Google Scholar 

  71. A.T. Ali, S. Khan, Concircular vector fields for plane symmetric static spacetimes. Eur. Phys. J. Plus 131, 1 (2016)

    ADS  Google Scholar 

  72. A. Mahmood, A.T. Ali, S. Khan, Concircular vector fields on Lorentzian manifold of Bianchi type-I spacetimes. Mod. Phys. Lett. A 33, 1850063 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  73. A. Mahmood, A.T. Ali, S. Khan, Concircular vector fields and the Ricci solitons for the LRS Bianchi type-V spacetimes. Mod. Phys. Lett. A 35, 2050169 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  74. S. Khan, A. Mahmood, A.T. Ali, Concircular vector fields for Kantowski-sachs and Bianchi type-III spacetimes. Int. J. Geomet. Methods Modern Phys. 15, 1850126 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  75. H. Stephani, D. Kramer, M.A.H. MacCullam, C. Hoenselears, E. Herlt, Exact Solutions of Einstein’s Field Equations (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  76. M.E. Rodrigues, M.J.S. Houndjo, D. Saez-Gomez, F. Rahaman, Anisotropic universe models in \(f(T)\) gravity. Phys. Rev. D 86, 104059 (2012)

    ADS  Google Scholar 

  77. A. Hobinya, I.A. Abbas, GN model on photothermal interactions in a two-dimensions semiconductor half space. Results Phys. 15, 102588 (2019)

    Google Scholar 

  78. I.A. abbas, R. Kumar, 2D deformation in initially stressed thermoelastic half-space with voids. Steel Compos. Struct. 20(5), 1103–1117 (2016)

    Google Scholar 

  79. A.M. Zenkour, I.A. Abbas, Nonlinear transient thermal stress analysis of temperature-dependent hollow cylinders using a finite element model. Int. J. Struct. Stab. Dyn. 14(7), 1450025 (17 pages) (2014)

    MathSciNet  MATH  Google Scholar 

  80. F. Alzahrani, A. Hobiny, I.A. Abbas, M. Marin, An eigenvalues approach for a two-dimensional porous medium based upon weak, normal and strong thermal conductivities. Symmetry (2020). https://doi.org/10.3390/SYM12050848

    Article  Google Scholar 

  81. I.A. Abbas, Generalized thermoelastic interaction in functional graded material with fractional order three-phase lag heat transfer. J. Central South Univ. 22, 1606–1613 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhail Khan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S.M., Khan, S., Ali, A.T. et al. A note on concircular vector fields of static plane symmetric perfect fluid spacetimes in f(T) theory of gravity. Eur. Phys. J. Plus 138, 533 (2023). https://doi.org/10.1140/epjp/s13360-023-04175-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04175-y

Navigation