Skip to main content
Log in

Aether field coupled to the electromagnetic field in the TFD formalism

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, the aether field, which leads to the violation of Lorentz symmetries, coupled with the electromagnetic field is considered. In order to study thermal and size effects in this theory, the thermofield dynamics (TFD) formalism is used. TFD is a real-time quantum field theory that has an interesting topological structure. Here, three different topologies are taken, and then, three different phenomena are calculated. These effects are investigated considering that the aether field can point in different directions. The results obtained are compared with the usual results of the Lorentz invariant electromagnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript.

References

  1. V.A. Kostelecky, S. Samuel, Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev. D 39, 683 (1989). https://doi.org/10.1103/PhysRevD.39.683

    Article  ADS  Google Scholar 

  2. V.A. Kostelecky, R. Potting, CPT and strings. Nucl. Phys. B 359, 545 (1991). https://doi.org/10.1016/0550-3213(91)90071-5

    Article  ADS  MathSciNet  Google Scholar 

  3. D. Colladay, V.A. Kostelecky, CPT violation and the standard model. Phys. Rev. D 55, 6760 (1997). https://doi.org/10.1103/PhysRevD.55.6760

    Article  ADS  Google Scholar 

  4. D. Colladay, V.A. Kostelecky, Lorentz-violating extension of the standard model. Phys. Rev. D 58, 116002 (1998). https://doi.org/10.1103/PhysRevD.58.116002

    Article  ADS  Google Scholar 

  5. V.A. Kostelecky, Gravity, Lorentz violation, and the standard model. Phys. Rev. D 69, 105009 (2004). https://doi.org/10.1103/PhysRevD.69.105009

    Article  ADS  Google Scholar 

  6. S.M. Carroll, H. Tam, Aether Compactification. Phys. Rev. D 78, 044047 (2008). https://doi.org/10.1103/PhysRevD.78.044047

    Article  ADS  MathSciNet  Google Scholar 

  7. R.K. Obousy, G. Cleaver, Radius destabilization in five dimensional orbifolds due to an enhanced Casimir effect. Mod. Phys. Lett. A 24, 1495 (2009). https://doi.org/10.1142/S0217732309030941

    Article  ADS  MATH  Google Scholar 

  8. R.K. Obousy, G. Cleaver, Casimir energy and brane stability. J. Geom. Phys. 61, 577 (2011). https://doi.org/10.1016/j.geomphys.2010.11.006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. A. Chatrabhuti, P. Patcharamaneepakorn, P. Wongjun, Aether field, Casimir energy and stabilization of the extra dimension. JHEP 0908, 019 (2009). https://doi.org/10.1088/1126-6708/2009/08/019

    Article  ADS  Google Scholar 

  10. A. Baeta Scarpelli, T. Mariz, J. Nascimento, A. Petrov, Four-dimensional aether-like Lorentz-breaking QED revisited and problem of ambiguities. Eur. Phys. J. C 73, 2526 (2013). https://doi.org/10.1140/epjc/s10052-013-2526-3

    Article  ADS  Google Scholar 

  11. T. Mariz, J. Nascimento, A. Y. Petrov, “On aether terms in a space-time with a compact extra dimension,” arXiv:1609.02467hep-th

  12. A. Santos, F.C. Khanna, Aether field in extra dimensions: Stefan-Boltzmann law and Casimir effect at finite temperature. Phys. Rev. D 95, 025021 (2017). https://doi.org/10.1103/PhysRevD.95.025021

    Article  ADS  MathSciNet  Google Scholar 

  13. C. Ccapa Ttira, C. Fosco, A. Malbouisson, I. Roditi, Vacuum polarization for compactified \(QED_{4+1}\) in a magnetic flux background. Phys. Rev. A 81, 032116 (2010). https://doi.org/10.1103/PhysRevA.81.032116

    Article  ADS  Google Scholar 

  14. S.M. Carroll, T.R. Dulaney, M.I. Gresham, H. Tam, Sigma-model aether. Phys. Rev. D 79, 065012 (2009). https://doi.org/10.1103/PhysRevD.79.065012

    Article  ADS  MathSciNet  Google Scholar 

  15. R.J.S. Oliveira, A. Pinzul, M.A. Anacleto, E. Passos, F.A. Brito, O. Holanda, The radiatively corrected Kaluza-Klein masses in aether compactification. Phys. Rev. D 102, 075008 (2020). https://doi.org/10.1103/PhysRevD.102.075008

    Article  ADS  MathSciNet  Google Scholar 

  16. Y. Takahashi, H. Umezawa, Thermo field dynamics. Collect. Phenom. Reprint. Int. J. Mod. Phys. B 10, 1755 (1996). https://doi.org/10.1142/S0217979296000817

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. F. C. Khanna, A. P. C. Malbouisson, J. M. C. Malbouisson, A. R. Santana, “Thermal quantum field theory - Algebraic aspects and applications,” World Scientific Publishing Company (2009)

  18. H. Umezawa, H. Matsumoto, M. Tachiki, Thermofield Dynamics and Condensed States (North-Holland, Amsterdam (Netherlands), 1982)

    Google Scholar 

  19. H. Umezawa, “Advanced field theory: Micro, macro, and thermal physics,” American Institute of Physics (1995)

  20. A.E. Santana, F. Khanna, Lie groups and thermal field theory. Phys. Lett. A 203, 68 (1995). https://doi.org/10.1016/0375-9601(95)00394-I

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. A. Kostelecky, Gravity, Lorentz violation, and the standard model. Phys. Rev. D 69, 105009 (2004). https://doi.org/10.1103/PhysRevD.69.105009

    Article  ADS  Google Scholar 

  22. R.A. Dantas, H.F. Santana Mota, E.R. Bezerra de Mello, “Bosonic Casimir effect in an aether-like Lorentz-violating scenario with higher order derivatives”, arXiv:2304.04078hep-th

  23. R. Casana, M.M. Ferreira Jr., J.S. Rodrigues, Lorentz-violating contributions of the Carroll-Field-Jackiw model to the CMB anisotropy. Phys. Rev. D 78, 125013 (2008). https://doi.org/10.1103/PhysRevD.78.125013

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work by A. F. S. is partially supported by National Council for Scientific and Technological Development - CNPq project No. 313400/2020-2. R.C. and L. H. A. R. F. thanks CAPES for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Santos.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corrêa, R., Ferreira, L.H.A.R., Santos, A.F. et al. Aether field coupled to the electromagnetic field in the TFD formalism. Eur. Phys. J. Plus 138, 530 (2023). https://doi.org/10.1140/epjp/s13360-023-04173-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04173-0

Navigation