Skip to main content
Log in

The vector DKP oscillator in the plane with a magnetic field and the Snyder–de Sitter algebra

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The Snyder–de Sitter (SdS) algebra is a model of noncommutative spacetime based on three fundamental constants: the speed of light, the Planck length and the cosmological constant, and can thus be viewed as a realization of triply special relativity. The commutation relations of this algebra might lead to the occurrence of minimal length as well as minimal momentum. In this paper, we investigate the spin-one Duffin–Kemmer–Petiau oscillator, subject to an external transverse homogeneous magnetic field (HMF), in \((1+2)\)-dimensional spacetime with the non-relativistic SdS algebra. The corresponding problem is exactly solved using the momentum representation: The oscillator wave functions and the associated energy eigenvalues are then obtained, and effects of the parameters of the SdS algebra are thoroughly analyzed. The special case of a spin-one particle moving in a plane under a perpendicular HMF as well as the non-relativistic limit of the system are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No data were associated in the manuscript.

References

  1. H.S. Snyder, Phys. Rev. 71, 38 (1947)

    Article  ADS  MathSciNet  Google Scholar 

  2. H.S. Snyder, Phys. Rev. 72, 68 (1947)

    Article  ADS  MathSciNet  Google Scholar 

  3. G. Amelino-Camelia, Phys. Lett. B 510, 255 (2001)

    Article  ADS  Google Scholar 

  4. G. Amelino-Camelia, Nature 418, 34 (2002)

    Article  ADS  Google Scholar 

  5. M.R. Douglas, C.M. Hull, J. High Energy Phys. 9802, 008 (1998)

    Article  ADS  Google Scholar 

  6. C.S. Chu, P.-M. Ho, Nucl. Phys. B 550, 151 (1999)

    Article  ADS  Google Scholar 

  7. N. Seiberg, E. Witten, J. High Energy Phys. 9909, 032 (1999)

    Article  ADS  Google Scholar 

  8. D.J. Gross, P.F. Mende, Nucl. Phys. B 303, 407 (1988)

    Article  ADS  Google Scholar 

  9. S. Doplicher, F. Fredenhagen, J.E. Roberts, Phys. Lett. B. 331, 39 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  10. P. Aschieri, M. Dimitrijevic, F. Meyer, J. Wess, Class. Quant. Grav. 23, 1883 (2006)

    Article  ADS  Google Scholar 

  11. A. Kempf, J. Math. Phys. 35, 4483 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  12. H. Hinrichsen, A. Kempf, J. Math. Phys. 37, 2121 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Kempf, J. Phys. A: Math. Gen. 30, 2093 (1997)

    Article  ADS  Google Scholar 

  14. F. Brau, J. Phys. A 32, 7691 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Benczik, L.N. Chang, D. Minic, T. Takeuchi, Phys. Rev. A 72, 012104 (2002)

    Article  ADS  Google Scholar 

  16. L.N. Chang, D. Minic, N. Okamura, T. Takeuchi, Phys. Rev. D 65, 125027 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  17. M.M. Stetsko, V.M. Tkachuk, Phys. Rev. A. 74, 012101 (2006)

    Article  ADS  Google Scholar 

  18. D. Bouaziz, N. Ferkous, Phys. Rev. A 82, 022105 (2010)

    Article  ADS  Google Scholar 

  19. Y. Chargui, A. Trabelsi, L. Chetouani, Phys. Lett. A 374, 531 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  20. Y. Chargui, A. Dhahbi, J. Math. Phys. 59, 082304 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. P. Pedram, Phys. Lett. B 714, 317 (2012)

    Article  ADS  Google Scholar 

  22. P. Pedram, Phys. Lett. B 718, 638 (2012)

    Article  ADS  Google Scholar 

  23. J.-Li. Li, C. -Feng Qiao, Ann. Phys. 533, 2000335 (2021)

    Article  Google Scholar 

  24. F. Wagner, Phys. Rev. D 104, 126010 (2021)

    Article  ADS  Google Scholar 

  25. A.N. Tawfik, A.M. Diab, Int. J. Mod. Phys. D 23(12), 1430 (2014)

    Article  Google Scholar 

  26. A.N. Tawfik, A.M. Diab, Rept. Prog. Phys. 78, 126 (2015)

    Article  Google Scholar 

  27. J.P. Bruneton, J. Larena, Gen Relativ Gravit 49, 56 (2017)

    Article  ADS  Google Scholar 

  28. S. Hossenfelder, Living Rev. Rel. 16, 2 (2013)

    Article  Google Scholar 

  29. J. Kowalski-Glikman, L. Smolin, Phys. Rev. D 70, 065020 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  30. C.N. Yang, Phys. Rev. 72, 874 (1947)

    Article  ADS  MathSciNet  Google Scholar 

  31. M. Born, Reviews of Modern Physics 21, 463 (1949)

    Article  ADS  Google Scholar 

  32. C. Bambi, F.R. Urban, Class. Quan. Grav. 25, 095006 (2008)

    Article  ADS  Google Scholar 

  33. S. Mignemi, Class. Quan. Grav. 29, 215019 (2012)

    Article  Google Scholar 

  34. S. Mignemi, Phys. Rev. D 84, 025021 (2011)

    Article  ADS  Google Scholar 

  35. S. Mignemi, R. Štrajn, Adv. High Energy Phys. 2016, 1328284 (2016)

    Article  Google Scholar 

  36. M.M. Stetsko, J. Math. Phys. 56, 012101 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  37. M. Falek, M. Merad, T. Birkandan, J. Math. Phys. 58, 023501 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  38. M. Falek, M. Merad, M. Moumni, J. Math. Phys. 60, 013505 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  39. A. Andolsi, Y. Chargui, A. Dhahbi, A. Trabelsi, Res. Phys. 48, 106430 (2023)

    Google Scholar 

  40. Y. Chargui, A. Dhahbi, Phys. Lett. A 457, 128538 (2023)

    Article  Google Scholar 

  41. Y. Nedjadi, R.C. Barrett, J. Phys. A 27, 4301 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  42. Y. Nedjadi, S. Ait-Tahary, R.C. Barrett, J. Phys. A 31, 3867 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  43. Y. Nedjadi, S. Ait-Tahary, R.C. Barrett, J. Phys. A 31, 6717 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  44. Y. Chargui, A. Dhahbi, Phys. Scr. 96, 075003 (2021)

    Article  ADS  Google Scholar 

  45. Y. Chargui, A. Dhahbi, M.A.J. Ali, Res. Phys. 44, 106142 (2023)

    Google Scholar 

  46. C. Quesne, V.M. Tkachuk, J. Phys. A: Math. Gen. 38, 1747 (2005)

    Article  ADS  Google Scholar 

  47. Y. Chargui, A. Dhahbi, Eur. J. Phys. Plus 138, 26 (2023)

    Article  Google Scholar 

  48. S. Sachdev, Quantun Phase Transition (Cambridge University, Cambridge, 1999)

    Google Scholar 

  49. M. Presilla, O. Panella, P. Roy, Phys. Rev. D 92, 045019 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their great appreciation to Pr. Abdelmalek Boumali from the University of Tebessa (Algeria) for his valuable suggestions during the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine Chargui.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chargui, Y., Dhahbi, A. The vector DKP oscillator in the plane with a magnetic field and the Snyder–de Sitter algebra. Eur. Phys. J. Plus 138, 531 (2023). https://doi.org/10.1140/epjp/s13360-023-04165-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04165-0

Navigation