Skip to main content

Advertisement

Log in

Simulation and optimization of Perovskite-based CQDs solar cells

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Here, we have proposed some ways to enhance the efficiency of Perovskite colloidal quantum dots (PCQDSCs). At first, we have modeled experimental JV results from a valid reference, and we examined our proposal. For the achievement of the highly efficient PCQDSCs, different materials as electron and hole transport layers (ETLs and HTLs) are replaced in the validated solar cell device, and efficiency enhancement was seen for ZnO and NiO as ETL and HTL, respectively. In the real situations, may be our results are not reliable and it’s due to the interface effect that can be considered by the interface properties of these mentioned materials with other semiconductor materials in the device. For considering this effect, we have modeled the validated case by changing the interface properties such as surface defect density, electron–hole capture cross sections, defect energy level, and surface defect types. The results show that choosing materials such as ETLs and HTLs with the formation of good interfaces with absorber and buffer is necessary to achieve highly efficient PCQDSCs. The results were promising and show that the PCQDSCs can be achieved 21.39% efficiency which is very high and eager the researchers work on it using the PCQDSCs in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the corresponding author [M. J Sarraf] upon reasonable request.]

References

  1. G.H. Carey, A.L. Abdelhady, Z. Ning, S.M. Thon, O.M. Bakr, E.H. Sargent, Colloidal quantum dot solar cells. Chem. Rev. 115, 12732–12763 (2015). https://doi.org/10.1021/acs.chemrev.5b00063

    Article  Google Scholar 

  2. J.Y. Kim, O. Voznyy, D. Zhitomirsky, E.H. Sargent, 25th anniversary article: colloidal quantum dot materials and devices: a quarter-century of advances. Adv. Mater. 25, 4986–5010 (2013)

    Article  Google Scholar 

  3. B. Sun, A. Johnston, C. Xu, M. Wei, Z. Huang, Z. Jiang, H. Zhou, Y. Gao, Y. Dong, O. Ouellette, Monolayer perovskite bridges enable strong quantum dot coupling for efficient solar cells. Joule 4, 1542–1556 (2020)

    Article  Google Scholar 

  4. L. Xu, S. Yuan, L. Ma, B. Zhang, T. Fang, X. Li, J. Song, All-inorganic perovskite quantum dots as light-harvesting, interfacial, and light-converting layers toward solar cells. J. Mater. Chem. A 9, 18947–18973 (2021)

    Article  Google Scholar 

  5. K. Chen, Q. Zhong, W. Chen, B. Sang, Y. Wang, T. Yang, Y. Liu, Y. Zhang, H. Zhang, Short-chain ligand-passivated stable α-CsPbI3 quantum dot for all-inorganic perovskite solar cells. Adv. Funct. Mater. 29, 1900991 (2019)

    Article  Google Scholar 

  6. A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore, J.A. Christians, T. Chakrabarti, J.M. Luther, Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016)

    Article  ADS  Google Scholar 

  7. L. Zhang, C. Kang, G. Zhang, Z. Pan, Z. Huang, S. Xu, H. Rao, H. Liu, S. Wu, X. Wu, All-inorganic CsPbI3 quantum dot solar cells with efficiency over 16% by defect control. Adv. Funct. Mater. 31, 2005930 (2021)

    Article  Google Scholar 

  8. L. Hu, Q. Zhao, S. Huang, J. Zheng, X. Guan, R. Patterson, J. Kim, L. Shi, C.-H. Lin, Q. Lei, Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat. Commun. 12, 466 (2021)

    Article  ADS  Google Scholar 

  9. H. Yu, Q. Sun, T. Zhang, X. Zhang, Y. Shen, M. Wang, Is the strain responsible to instability of inorganic perovskites and their photovoltaic devices? Mater. Today Energy 19, 100601 (2021)

    Article  Google Scholar 

  10. Y. Li, X. Wang, W. Xue, W. Wang, W. Zhu, L. Zhao, Highly luminescent and stable CsPbBr3 perovskite quantum dots modified by phosphine ligands. Nano Res. 12, 785–789 (2019)

    Article  Google Scholar 

  11. C. Luo, W. Li, D. Xiong, J. Fu, W. Yang, Surface pre-optimization of a mixed halide perovskite toward high photoluminescence quantum yield in the blue spectrum range. Nanoscale 11, 15206–15215 (2019)

    Article  Google Scholar 

  12. Y. Wang, J. Yuan, X. Zhang, X. Ling, B.W. Larson, Q. Zhao, Y. Yang, Y. Shi, J.M. Luther, W. Ma, Surface ligand management aided by a secondary amine enables increased synthesis yield of CsPbI3 perovskite quantum dots and high photovoltaic performance. Adv. Mater. 32, 2000449 (2020)

    Article  Google Scholar 

  13. X. Ling, J. Yuan, X. Zhang, Y. Qian, S.M. Zakeeruddin, B.W. Larson, Q. Zhao, J. Shi, J. Yang, K. Ji, Guanidinium-assisted surface matrix engineering for highly efficient perovskite quantum dot photovoltaics. Adv. Mater. 32, 2001906 (2020)

    Article  Google Scholar 

  14. J. Khan, X. Zhang, J. Yuan, Y. Wang, G. Shi, R. Patterson, J. Shi, X. Ling, L. Hu, T. Wu, Tuning the surface-passivating ligand anchoring position enables phase robustness in CsPbI3 perovskite quantum dot solar cells. ACS Energy Lett. 5, 3322–3329 (2020)

    Article  Google Scholar 

  15. X. Ling, S. Zhou, J. Yuan, J. Shi, Y. Qian, B.W. Larson, Q. Zhao, C. Qin, F. Li, G. Shi, 14.1% CsPbI3 perovskite quantum dot solar cells via cesium cation passivation. Adv. Energy Mater. 9, 1900721 (2019)

    Article  Google Scholar 

  16. J. Yuan, A. Hazarika, Q. Zhao, X. Ling, T. Moot, W. Ma, J.M. Luther, Metal halide perovskites in quantum dot solar cells: progress and prospects. Joule. 4, 1160–1185 (2020)

    Article  Google Scholar 

  17. M. Hao, Y. Bai, S. Zeiske, L. Ren, J. Liu, Y. Yuan, N. Zarrabi, N. Cheng, M. Ghasemi, P. Chen, Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nat. Energy 5, 79–88 (2020)

    Article  ADS  Google Scholar 

  18. A. Hazarika, Q. Zhao, E.A. Gaulding, J.A. Christians, B. Dou, A.R. Marshall, T. Moot, J.J. Berry, J.C. Johnson, J.M. Luther, Perovskite quantum dot photovoltaic materials beyond the reach of thin films: full-range tuning of A-site cation composition. ACS Nano 12, 10327–10337 (2018)

    Article  Google Scholar 

  19. I. Mukherjee, S. Somay, S.K. Pandey, Comprehensive device modeling and performance analysis of quantum dot-Perovskite solar cells. J. Electron. Mater. 51, 1524–1532 (2022)

    Article  ADS  Google Scholar 

  20. A. Karani, L. Yang, S. Bai, M.H. Futscher, H.J. Snaith, B. Ehrler, N.C. Greenham, D. Di, Perovskite/colloidal quantum dot tandem solar cells: theoretical modeling and monolithic structure. ACS Energy Lett. 3, 869–874 (2018)

    Article  Google Scholar 

  21. M. Burgelman, J. Verschraegen, S. Degrave, P. Nollet, Modeling thin-film PV devices. Prog. Photovolt Res. Appl. 12, 143–153 (2004). https://doi.org/10.1002/pip.524

    Article  Google Scholar 

  22. M. Burgelman, J. Verschraegen, B. Minnaert, J. Marlein, Numerical simulation of thin film solar cells: practical exercises with SCAPS. In: Proceedings of NUMOS Ghent University (2007), pp. 357–366

  23. Y. Kawano, J. Chantana, T. Minemoto, Impact of growth temperature on the properties of SnS film prepared by thermal evaporation and its photovoltaic performance. Curr. Appl. Phys. 15, 897–901 (2015). https://doi.org/10.1016/j.cap.2015.03.026

    Article  ADS  Google Scholar 

  24. A. Ghobadi, M. Yousefi, M. Minbashi, A.H.A. Kordbacheh, A.R.H. Abdolvahab, N.E. Gorji, Simulating the effect of adding BSF layers on Cu2BaSnSSe3 thin film solar cells. Opt. Mater. (Amst.) 107, 109927 (2020). https://doi.org/10.1016/j.optmat.2020.109927

    Article  Google Scholar 

  25. S.J. Fonash, Chapter two—material properties and device physics basic to photovoltaics, in Solar Cell Device Physics, 2nd edn., ed. by E. Fonash (Academic Press, Boston, 2010), pp.9–65. https://doi.org/10.1016/B978-0-12-374774-7.00002-9

    Chapter  Google Scholar 

  26. M. Burgelman, Mott–Schottky analysis from C–V simulations, and admittance analysis from C-f simulations in SCAPS, in: Department of Electronics and Information Technology (ELIS), University of Gent, ‘Belgium’ (2017), pp. 2–4

  27. Y. Park, S. Lee, J. Yi, B.-D. Choi, D. Kim, J. Lee, Sputtered CdTe thin film solar cells with Cu2Te/Au back contact. Thin Solid Films 546, 337–341 (2013). https://doi.org/10.1016/j.tsf.2013.02.108

    Article  ADS  Google Scholar 

  28. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, 2006)

    Book  Google Scholar 

  29. M. Yue, J. Su, P. Zhao, Z. Lin, J. Zhang, J. Chang, Y. Hao, Optimizing the performance of CsPbI3-based perovskite solar cells via doping a ZnO electron transport layer coupled with interface engineering. Nano-Micro Lett. 11, 1–14 (2019)

    Article  ADS  Google Scholar 

  30. L. Lin, L. Jiang, P. Li, H. Xiong, Z. Kang, B. Fan, Y. Qiu, Simulated development and optimized performance of CsPbI3 based all-inorganic perovskite solar cells. Sol. Energy 198, 454–460 (2020)

    Article  ADS  Google Scholar 

  31. M. Al Mubarok, H. Aqoma, F.T.A. Wibowo, W. Lee, H.M. Kim, D.Y. Ryu, J. Jeon, S. Jang, Molecular engineering in hole transport π-conjugated polymers to enable high efficiency colloidal quantum dot solar cells. Adv. Energy Mater. 10, 1902933 (2020)

    Article  Google Scholar 

  32. G.A. Nowsherwan, A. Samad, M.A. Iqbal, T. Mushtaq, A. Hussain, M. Malik, S. Haider, P.V. Pham, J.R. Choi, Performance analysis and optimization of a PBDB-T: ITIC based organic solar cell using graphene oxide as the hole transport layer. Nanomaterials 12, 1767 (2022)

    Article  Google Scholar 

  33. M. Minbashi, E. Yazdani, Comprehensive study of anomalous hysteresis behavior in perovskite-based solar cells. Sci. Rep. 12, 1–14 (2022). https://doi.org/10.1038/s41598-022-19194-5

    Article  Google Scholar 

  34. C. Ding, D. Wang, D. Liu, H. Li, Y. Li, S. Hayase, T. Sogabe, T. Masuda, Y. Zhou, Y. Yao, Over 15% efficiency PbS quantum-dot solar cells by synergistic effects of three interface engineering: reducing nonradiative recombination and balancing charge carrier extraction. Adv. Energy Mater. 12, 2201676 (2022)

    Article  Google Scholar 

  35. F. Azri, A. Meftah, N. Sengouga, A. Meftah, Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. Sol. Energy. 181, 372–378 (2019). https://doi.org/10.1016/j.solener.2019.02.017

    Article  ADS  Google Scholar 

  36. B.K. Ravidas, M.K. Roy, D.P. Samajdar, Investigation of photovoltaic performance of lead-free CsSnI3-based perovskite solar cell with different hole transport layers: first principle calculations and SCAPS-1D ANALYSIS. Sol. Energy 249, 163–173 (2023)

    Article  ADS  Google Scholar 

Download references

Funding

Authors state no funding involved.

Author information

Authors and Affiliations

Authors

Contributions

Ali Memari and Mohammad Javadian Sarraf wrote the main manuscript text. Ali Memari provided the simulation results and prepared all the figures. Mohammad Javadian Sarraf provided guidance and supervision. Seyyed Javad Seyyed Mahdavi Chabok and Leili Motevalizadeh provided review and editing. All the authors reviewed the manuscript.

Corresponding author

Correspondence to Mohammad Javadian Sarraf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 381 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Memari, A., Sarraf, M.J., Chabok, S.J.S.M. et al. Simulation and optimization of Perovskite-based CQDs solar cells. Eur. Phys. J. Plus 138, 553 (2023). https://doi.org/10.1140/epjp/s13360-023-04156-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04156-1

Navigation