Skip to main content

Advertisement

Log in

One-dimensional metamaterial photonic crystals comprising gyroidal and hyperbolic layers as an angle-insensitive reflector for energy applications in IR regions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, we have theoretically introduced the reflectance spectrum of the one-dimensional metamaterial photonic crystals (PCs) based on the effective medium theory (EMT) and the well-defined transfer matrix formulism. The candidate structure is composed of two metamaterials, including hyperbolic (CD) and gyroidal (G) metamaterials, such as [G (CD)m]s. In this regard, the gyroidal metamaterial is designed from Silver (Ag) of a gyroidal configuration in a dielectric host material (TiO2). Then, the hyperbolic metamaterial appears as a composite design of Indium Arsenide (InAs) and Ag for m periods. The numerical findings showed the emergence of an angle-insensitive photonic bandgap, extending from 2.5 μm to 4 μm. Meanwhile, we have considered the impact of the filling fraction, periodicity number (m and S), and thicknesses on the reflectivity of the proposed reflector. We believe that this structure could be promising as an angle-insensitive reflector for various solar energy applications, such as reflectors, wavelength-selective absorbers, smart widows, and an intermediate layer for solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Requests should be addressed to the corresponding author.]

References

  1. T.A. Taha, H. Sayed, A.H. Aly, H.A. Elsayed, Textured concave anti-reflecting coating and convex back reflector to enhance the absorbance of amorphous Si solar cells. Phys. Scr. 97(5), 055503 (2022)

    Article  ADS  Google Scholar 

  2. A.G. Mohamed, W. Sabra, A. Mehaney, A.H. Aly, H.A. Elsayed, Multiplication of photonic band gaps in one-dimensional photonic crystals by using hyperbolic metamaterial in IR range. Sci. Rep. 13(1), 324 (2023)

    Article  ADS  Google Scholar 

  3. F.A. Sayed, H.A. Elsayed, A. Mehaney, M.F. Eissa, A.H. Aly, A doped-polymer based porous silicon photonic crystal sensor for the detection of gamma-ray radiation. RSC Adv. 13(5), 3123–3138 (2023)

    Article  ADS  Google Scholar 

  4. N. Kumar, B. Suthar, Advances in Photonic Crystals and Devices (CRC Press, Boca Raton, 2019)

    Book  Google Scholar 

  5. M. Castillo, D. Cunha, C. Estévez-Varela, D. Miranda, I. Pastoriza-Santos, S. Núñez-Sánchez, M. Vasilevskiy, M. Lopez-Garcia, Tunable narrowband excitonic optical Tamm states enabled by a metal free all organic structure. Nanophotonics 11(21), 4879–4888 (2022)

    Article  Google Scholar 

  6. A.H.M. Almawgani, H.A. Elsayed, A. Mehaney, T.A. Taha, Z.A. Alrowaili, G.A. Ali, W. Sabra, S. Asaduzzaman, A.M. Ahmed, Photonic crystal nanostructure as a photodetector for NaCl solution monitoring: theoretical approach. RSC Adv. 13(10), 6737–6746 (2023)

    Article  ADS  Google Scholar 

  7. N. Kumar, B. Suthar, A. Rostami, Novel optical behaviors of metamaterial and polymer-based ternary photonic crystal with lossless and lossy features. Opt Commun 529, 129073 (2023)

    Article  Google Scholar 

  8. T.A. Taha, A. Mehaney, H.A. Elsayed, Detection of heavy metals using one-dimensional gyroidal photonic crystals for effective water treatment. Mater. Chem. Phys. 285, 126125 (2022)

    Article  Google Scholar 

  9. S. Stutzer, Y. Plotnik, Y. Lumer Y, et al., Photonic topological Anderson insulators. Nature 560, 461–465 (2018)

    Article  ADS  Google Scholar 

  10. L. Lu, Z. Wang, D. Ye et al., Experimental observation of Weyl points. Science 349, 622–624 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. A.H. Aly, S.A. El-Naggar, H.A. Elsayed, Tunability of two dimensional n-doped semiconductor photonic crystals based on the Faraday effect. Opt. Express 23(11), 15038–15046 (2015)

    Article  ADS  Google Scholar 

  12. A.G. Mohamed, H.A. Elsayed, A. Mehaney, A.H. Aly, W. Sabra, Transmittance properties of one-dimensional metamaterial nanocomposite photonic crystal in GHz range. Sci. Rep. 12(1), 18331 (2022)

    Article  ADS  Google Scholar 

  13. M. Xiao, Q. Lin, S. Fan, Hyperbolic weyl point in reciprocal chiral metamaterials. Phys. Rev. Lett. 117, 057401 (2016)

    Article  ADS  Google Scholar 

  14. C. Lv, W. Li, X. Jiang, J. Cao, Far field super resolution imaging with a planar hyperbolic metamaterial lens. Europhys. Lett. 105, 28003 (2014)

    Article  ADS  Google Scholar 

  15. F. Wu, D. Liu, H.-J. Li, M. Feng, A redshifted photonic bandgap and wide-angle polarization selection in an all-hyperbolic-metamaterial one-dimensional photonic crystal. Phys. Chem. Chem. Phys. 25(15), 10785–10794 (2023)

    Article  Google Scholar 

  16. L.Q. Cong, S.K. Valiyaveedu, J.H. Shi, X.Q. Zhang, Terahertz radiation: materials and applications. Front. Phys. 9, 671647 (2021)

    Article  Google Scholar 

  17. R. Zhang, Q. Chen, K. Liu, Z. Chen, K. Li, X. Zhang, J. Xu, E.P. MacPherson, Terahertz microfluidic metamaterial biosensor for sensitive detection of small-volume liquid samples. IEEE Trans. Terahertz Sci. Technol. 9(2), 209–214 (2019)

    Article  ADS  Google Scholar 

  18. M.-R. Nickpay, M. Danaie, A. Shahzadi, Highly sensitive THz refractive index sensor based on folded split ring metamaterial graphene resonators. Plasmonics 17(1), 237–248 (2022)

    Article  Google Scholar 

  19. H. Ou, F. Lu, Z. Xu, Y.S. Lin, Terahertz metamaterial with multiple resonances for biosensing application. Nanomaterials 10(6), 1038 (2020)

    Article  Google Scholar 

  20. K. Yao, Y. Liu, “Plasmonic metamaterials. Nanotechnol. Rev. 3, 177–210 (2014)

    Article  Google Scholar 

  21. M. Seo, H.R. Park, Terahertz biochemical molecule-specific sensors. Adv. Opt. Mater. 8(3), 1900662 (2020)

    Article  Google Scholar 

  22. S. Niknam, M. Yazdi, S. Behboudi Amlashi, Enhanced ultra-sensitive metamaterial resonance sensor based on double corrugated metal stripe for terahertz sensing. Sci. Rep. 9(1), 7516 (2019)

    Article  ADS  Google Scholar 

  23. F. Meng, M.D. Thomson, B. Klug, H.G. Roskos, Strong interaction between two photons and a plasmon of a complementary metamaterial in a terahertz dual cavity. Opt. Express 29(26), 42420–42434 (2021)

    Article  ADS  Google Scholar 

  24. F. Meng, M.D. Thomson, B. Klug, D. Cibiraite, Q. Ul-Islam, H.G. Roskos, “Nonlocal collective ultrastrong interaction of plasmonic metamaterials and photons in a terahertz photonic crystal cavity. Opt. Express 27(17), 24455–24468 (2019)

    Article  ADS  Google Scholar 

  25. S. Vignolini, N.A. Yufa, P.S. Cunha, S. Guldin, I. Rushkin, M. Stefik, K. Hur, U. Wiesner, J.J. Baumberg, U. Steiner, A 3D optical metamaterial made by self-assembly. Adv. Mater. 24, OP23–OP27 (2012)

    Article  Google Scholar 

  26. S.K. Srviastava, A. Aghajamali, Analysis of reflectance properties in 1D photonic crystal containing metamaterial and high-temperature superconductor. J. Supercond. Novel Magn. 30(2), 343–351 (2017)

    Article  Google Scholar 

  27. B.D.F. Casse, W.T. Lu, Y.J. Huang, E. Gultepe, L. Menon, S. Sridhar, Super resolution imaging using a three-dimensional metamaterial nanolens. Appl. Phys. Lett. 96, 023114 (2010)

    Article  ADS  Google Scholar 

  28. L. Ferrari, C. Wu, D. Lepage, X. Zhang, Z. Liu, Hyperbolic metamaterials and their applications. Prog. Quantum Electron. 40, 1–40 (2015)

    Article  Google Scholar 

  29. B. Janaszek, P. Szczepański, Distributed feedback laser based on tunable photonic hypercrystals. Materials 14, 4065 (2021)

    Article  ADS  Google Scholar 

  30. O.N. Kozina, L.A. Melnikov, I.S. Nefedov, A theory for terahertz lasers based on a graphene hyperbolic metamaterial. J. Opt. 22, 095003 (2020)

    Article  ADS  Google Scholar 

  31. M.A. Baqir, P.K. Choudhury, Design of hyperbolic metamaterial-based absorber comprised of Ti nanospheres. IEEE Photon. Technol. Lett. 31, 735 (2019)

    Article  ADS  Google Scholar 

  32. E.E. Narimanov, Photonic hypercrystals. Phys. Rev. X 4, 041014 (2014)

    Google Scholar 

  33. S.V. Zhukovsky, A.A. Orlov, V.E. Babicheva, A.V. Lavrinenko, J.E. Sipe, Photonic bandgap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials. Phys. Rev. A 90, 013801 (2014)

    Article  ADS  Google Scholar 

  34. F. Wu, X. Wu, S. Xiao, G. Liu, H. Li, Broadband wide-angle multilayer absorber based on a broadband omnidirectional optical Tamm state. Opt. Express 29, 23976 (2021)

    Article  ADS  Google Scholar 

  35. A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, Hyperbolic metamaterials. Nat. Photonics 7, 948 (2013)

    Article  ADS  Google Scholar 

  36. O. Takayama, A.V. Lavrinenko, Optics with hyperbolic materials. J. Opt. Soc. Am. B 36, F38 (2019)

    Article  Google Scholar 

  37. R.G. Bikbaev, S.Y. Vetrov, I.V. Timofeev, Hyperbolic metamaterial for the Tamm plasmon polariton application. J. Opt. Soc. Am. B 37, 2215 (2020)

    Article  ADS  Google Scholar 

  38. S. Hu, S. Du, J. Li, C. Gu, Multidimensional image and beam splitter based on hyperbolic. Nano Lett. 21(4), 1792–1799 (2021)

    Article  ADS  Google Scholar 

  39. C. Xue, Y. Ding, H. Jiang, Y. Li, Z. Wang, Y. Zhang, H. Chen, Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials. Phys. Rev. B 93(12), 125310 (2016)

    Article  ADS  Google Scholar 

  40. Y. Li, B.P. Bastakoti, Y. Yamauchi, Research update: triblock copolymers as templates to synthesize inorganic nanoporous materials. APL Mater. 4, 040703 (2016)

    Article  ADS  Google Scholar 

  41. I. Vukovic, G.T. Brinke, K. Loos, Block copolymer template-directed synthesis of well-ordered metallic nanostructures. Polymer 54, 2591–2605 (2013)

    Article  Google Scholar 

  42. H.-Y. Hsueh, H.-Y. Chen, Y.-C. Ling, W.-S. Huang, Y.-C. Hung, S. Gwo, R.-M. Ho, A polymer-based SERS-active substrate with gyroid-structured gold multibranches. J. Mater. Chem. C 2, 4667–4675 (2014)

    Article  Google Scholar 

  43. B.D. Wilts, K. Michielsen, H. De Raedt, D.G. Stavenga, Iridescence and spectral filtering of the gyroid-type photonic crystals in parides sesostris wing scales. Interface Focus 2, 681–687 (2012)

    Article  Google Scholar 

  44. S. Prayakarao, S. Robbins, N. Kinsey, A. Boltasseva, V.M. Shalaev, U.B. Wiesner, C.E. Bonner, R. Hussain, N. Noginova, M.A. Noginov, Gyroidal titanium nitride as nonmetallic metamaterial. Opt. Mater. Express 5, 1316–1322 (2015)

    Article  ADS  Google Scholar 

  45. K. Hur, Y. Francescato, V. Giannini, S.A. Maier, R.G. Hennig, U. Wiesner, Three-dimensionally isotropic negative refractive index materials from block copolymer self-assembled chiral gyroid networks. Angew. Chem. 123, 12191–12195 (2011)

    Article  ADS  Google Scholar 

  46. O. Buchnev, N. Podoliak, K. Kaltenecker, M. Walther, V.A. Fedotov, Metasurface-based optical liquid crystal cell as an ultrathin spatial phase modulator for THz applications. ACS Photonics 7(11), 3199–3206 (2020)

    Article  Google Scholar 

  47. W. Zhang, S. Yu, Bistable switching using an optical Tamm cavity with a Kerr medium. Opt. Commun. 283, 2622–2626 (2010)

    Article  ADS  Google Scholar 

  48. J. Wu, Z. Shen, S. Ge et al., Liquid crystal programmable metasurface for terahertz beam steering. Appl. Phys. Lett. 116(13), 131104 (2020)

    Article  ADS  Google Scholar 

  49. M.M. Born, E. Wolf, Principles of Optics (Cambridge University Press, London, 1999)

    Book  MATH  Google Scholar 

  50. S.J. Orfanidis, Electromagnetic Waves and Antennas (Rutger University, 2008)

    Google Scholar 

  51. S. Sharma, R. Kumar, K.S. Singh, A. Kumar, V. Kumar, Omnidirectional reflector using linearly graded refractive index profile of 1D binary and ternary photonic crystal. Optik 126, 1146–1149 (2015)

    Article  ADS  Google Scholar 

  52. S.A. El-Naggar, Tunable terahertz omnidirectional photonic gap in one dimensional graphene-based photonic crystals. Opt. Quant. Electron. 47(7), 1627–1636 (2015)

    Article  Google Scholar 

  53. W. Sabra, H.A. Elsayed, A. Mehaney, A.H. Aly, Numerical optimization of 1D superconductor photonic crystals pressure sensor for low temperatures applications. Solid State Commun. 343, 114671 (2022)

    Article  Google Scholar 

  54. V.E. Babicheva, M.Y. Shalaginov, S. Ishii, A. Boltasseva, A.V. Kildishev, “Finite-width plasmonic waveguides with hyperbolic multilayer cladding. Opt. Express 23(8), 9681–9689 (2015)

    Article  ADS  Google Scholar 

  55. B. Janaszek, M. Kieliszczyk, A. Tyszka-Zawadzka, P. Szczepanski, Multi resonance response in hyperbolic metamaterials. Appl. Opt. 57, 2135 (2018)

    Article  ADS  Google Scholar 

  56. A.H.M. Almawgani, M.G. Daher, S.A. Taya, M. Mashagbeh, I. Colak, Optical detection of fat concentration in milk using MXene based surface plasmon resonance structure. Biosensors 12, 535 (2022)

    Article  Google Scholar 

  57. B. Han, Y. Zhang, S.E.X. Wang, D. Yang, T. Wang, K. Lu, F. Wang, Simultaneous measurement of temperature and strain based on dual SPR effect in PCF. Opt. Laser Technol. 113, 46–51 (2019)

    Article  ADS  Google Scholar 

  58. D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, M. Qiu, Ultra-narrowband light dissipation by a stack of lamellar silver and alumina. Appl. Phys. Lett. 104, 221107 (2014)

    Article  ADS  Google Scholar 

  59. J. Kim, V.P. Drachev, Z. Jacob, G.V. Naik, A. Boltasseva, E.E. Narimanov, V.M. Shalaev, Improving the radiative decay rate for dye molecules with hyperbolic metamaterials. Opt. Express 20, 8100–8116 (2012)

    Article  ADS  Google Scholar 

  60. M.Y. Shalaginov, S. Ishii, J. Liu, J. Liu, J. Irudayaraj, A. Lagutchev, A.V. Kildishev, V.M. Shalaev, Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials. Appl. Phys. Lett. 102, 173114 (2013)

    Article  ADS  Google Scholar 

  61. B.W. Stuart, X. Tao, D. Gregory, H.E. Assender, Roll-to-roll patterning of Al/Cu/Ag electrodes on flexible poly(ethylene terephthalate) by oil masking: a comparison of thermal evaporation and magnetron sputtering. Appl. Surf. Sci. 505, 144294 (2020)

    Article  Google Scholar 

  62. M. Shaban, A.M. Ahmed, E. Abdel-Rahman, H. Hamdy, Tunability and sensing properties of plasmonic/1D photonic crystal. Sci. Rep. 7, 41983 (2017)

    Article  ADS  Google Scholar 

  63. J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, X. Zhang, Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat. Commun. 1, 143 (2010)

    Article  ADS  Google Scholar 

  64. A.J. Hoffman, L. Alekseyev, S.S. Howard, K.J. Franz, D. Wasserman, V.A. Podolskiy, E.E. Narimanov, D.L. Sivco, C. Gmachl, Negative refraction in semiconductor metamaterials. Nat. Mater. 6, 946–950 (2007)

    Article  ADS  Google Scholar 

  65. H. Shen, Z. Wang, Y. Wu, B. Yang, One-dimensional photonic crystals: fabrication, responsiveness and emerging applications in 3D construction. RSC Adv. 6, 4505–4520 (2016)

    Article  ADS  Google Scholar 

  66. L. González-García, S. Colodrero, H. Míguez, A.R. González-Elipe, Single-step fabrication process of 1-D photonic crystals coupled to nanocolumnar TiO2 layers to improve DSC efficiency. Opt. Express 23(24), A1642–A1650 (2015)

    Article  ADS  Google Scholar 

  67. K. Fukukawa, M. Ueda, recent progress of photosensitive polyimides. Polym. J. 40, 281–296 (2008)

    Article  Google Scholar 

  68. J.P.-P. González, A. Lamure, F. Senocq, Surf. Coat. Technol. 201, 9437–9944 (2007)

    Article  Google Scholar 

  69. S.-M. Lian, K.-M. Chen, R.-J. Lee, J.-P. Pan, A. Hung, Chemical etching of polyimide film. J. Appl. Polym. Sci. 58(9), 1577–1584 (1995)

    Article  Google Scholar 

  70. A.M. Ahmed, A. Mehaney, Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region. Sci. Rep. 9, 6973 (2019)

    Article  ADS  Google Scholar 

  71. R. Xiong, J. Luan, S. Kang, C. Ye, S. Singamaneni, V. V. Tsukruk, Biopolymeric photonic structures: design, fabrication, and emerging applications. Chem. Soc. Rev. 49, 983–1031 (2020)

  72. J. Hoffmann, T. Lehnert, D. Hoffmann, H. Fouckhardt, Advantages and disadvantages of sulfur passivation of InAs/GaSb superlattice waveguide photodiodes. Semicond. Sci. Technol. 24(6), 65008 (2009)

    Article  Google Scholar 

  73. D.A. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, I. Vendik, How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an srr-like geometry. Adv. Funct. Mater. 20, 1116 (2010)

    Article  Google Scholar 

  74. A.C. Edrington, A.M. Urbas, P. DeRege, C.X. Chen, T.M. Swager, N. Hadjichristidis, M. Xenidou, L.J. Fetters, J.D. Joannopoulos, Y. Fink, Polymer-based photonic crystals. Adv. Mater. 13, 421 (2001)

    Article  Google Scholar 

  75. I. Vukovic, S. Punzhin, Z. Vukovic, P. Onck, J.T.M. De Hosson, G. ten Brinke, K. Loos, Supramolecular route to well-ordered metal nanofoams. ACS Nano 5, 6339 (2011)

    Article  Google Scholar 

  76. S.S. Oh, A. Demetriadou, S. Wuestner, O. Hess, On the origin of chirality in nanoplasmonic gyroid metamaterials. Adv. Mater. 25, 612 (2013)

    Article  Google Scholar 

  77. P. Farah, A. Demetriadou, S. Salvatore, S. Vignolini, M. Stefik, U. Wiesner, O. Hess, U. Steiner, V.K. Valev, J.J. Baumberg, Ultrafast nonlinear response of gold gyroid three-dimensional meta-materials. Phys. Rev. Appl. 2, 044002 (2014)

    Article  ADS  Google Scholar 

  78. F. Wu, G. Lu, C. Xue, H. Jiang, Z. Guo, M. Zheng, C. Chen, G. Du, H. Chen, Experimental demonstration of angle-independent gaps in one-dimensionalphotonic crystals containing layered hyperbolic metamaterials and dielectrics atvisible wavelengths. Appl. Phys. Lett. 112, 041902 (2018)

    Article  ADS  Google Scholar 

  79. A. Demetriadou, O. Hess, Analytic theory of optical nanoplasmonic metamaterias. Phys. Rev. B 87, 161101 (2013)

    Article  ADS  Google Scholar 

  80. A. Demetriadou, S.S. Oh, S. Wuestner, O. Hess, A trihelical model for nanoplasmonic gyroid metamaterials. New J. Phys. 14, 083032 (2012)

    Article  ADS  Google Scholar 

  81. F. Wu, G. Lu, Z. Guo, H. Jiang, C. Xue, M. Zheng, C. Chen, G. Du, H. Chen, Redshift gaps in one-dimensional photonic crystals containing hyperbolic metamaterials. Phys. Rev. Appl. 10(6), 064022 (2018)

    Article  ADS  Google Scholar 

  82. F. Wang, Y.Z. Cheng, X. Wang, D. Qi, H. Luo, R.Z. Gong, Effective modulation of the photonic band gap based on Ge/ZnS one-dimensional photonic crystal at the infrared band. Opt. Mater. 75, 373–378 (2018)

    Article  ADS  Google Scholar 

  83. D.M. Calvo-Velasco, R. Sanchez-Cano, Omnidirectional photonic band gaps in one-dimensional gradient refractive index photonic crystals considering linear and quadratic profiles. Curr. Appl. Phys. 35, 72–77 (2022)

    Article  ADS  Google Scholar 

  84. G. Lu, X. Zhou, Y. Zhao, K. Zhang, H. Zhou, J. Li, C. Diao, F. Liu, A. Wu, G. Du, Omnidirectional photonic bandgap in one-dimensional photonic crystals containing hyperbolic metamaterials. Opt. Express 29(20), 31915–31923 (2021)

    Article  ADS  Google Scholar 

  85. B.K. Singh, M.K. Chaudhari, P.C. Pandey, Photonic and omnidirectional band gap engineering in one-dimensional photonic crystals consisting of linearly graded index material. J. Lightwave Technol. 34(10), 2431–2438 (2016)

    Article  ADS  Google Scholar 

  86. Y. Kang, H. Liu, Wideband absorption in one dimensional photonic crystal with graphene-based hyperbolic metamaterials. Superlattices Microstruct. 114, 355–360 (2018)

    Article  ADS  Google Scholar 

Download references

Funding

The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Priorities and Najran Research funding program grant code (NU/NRP/SERC/12/5).

Author information

Authors and Affiliations

Authors

Contributions

Project administration, AHMA, GAA, MI, MM, HAE, and AM; Supervision, AHMA, GAA, MI, MM, HAE, and AM; Software, AHMA, and GAA; Visualization, AM, and MM; Writing—review & editing, AHMA, MM, HAE, and AM; Writing—original draft, MM; Methodology, MM, and HAE; Data curation, HAE, and MM; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Hussein A. Elsayed.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almawgani, A.H.M., Medhat, M., Mehaney, A. et al. One-dimensional metamaterial photonic crystals comprising gyroidal and hyperbolic layers as an angle-insensitive reflector for energy applications in IR regions. Eur. Phys. J. Plus 138, 483 (2023). https://doi.org/10.1140/epjp/s13360-023-04080-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04080-4

Navigation